Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vilkomerson, J. Opt. Soc. Am. 61, 929 (1971).
    [Crossref]
  2. J. M. Burch, in Optical Instruments and Techniques, 1969, edited by J. Home Dickson (Oriel, Newcastle-upon-Tyne, England, 1970), p. 213.
  3. J. W. Goodman, J. Opt. Soc. Am. 57, 493 (1967).
    [Crossref] [PubMed]
  4. W. B. Davenport and W. L. Root, Random Signals and Noise (McGraw–Hill, New York, 1958), Ch. 3.
  5. G. N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, England, 1962), Ch. 3.

1971 (1)

1967 (1)

Burch, J. M.

J. M. Burch, in Optical Instruments and Techniques, 1969, edited by J. Home Dickson (Oriel, Newcastle-upon-Tyne, England, 1970), p. 213.

Davenport, W. B.

W. B. Davenport and W. L. Root, Random Signals and Noise (McGraw–Hill, New York, 1958), Ch. 3.

Goodman, J. W.

Root, W. L.

W. B. Davenport and W. L. Root, Random Signals and Noise (McGraw–Hill, New York, 1958), Ch. 3.

Vilkomerson, D.

Watson, G. N.

G. N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, England, 1962), Ch. 3.

J. Opt. Soc. Am. (2)

Other (3)

W. B. Davenport and W. L. Root, Random Signals and Noise (McGraw–Hill, New York, 1958), Ch. 3.

G. N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, England, 1962), Ch. 3.

J. M. Burch, in Optical Instruments and Techniques, 1969, edited by J. Home Dickson (Oriel, Newcastle-upon-Tyne, England, 1970), p. 213.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Normalized probability-density functions of irradiance for the combined field, for beam ratios, r, equal to 0, 1, 2, 3, 5, and 10.

Fig. 2
Fig. 2

The standard deviation of the irradiance fluctuation relative to the total average irradiance as a function of the beam ratio, r.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p ( u R , u I ) = 1 π I N exp ( - ( u R 2 + u I 2 ) I N ) ,
p ( u R , u I ) = 1 π I N exp ( - ( u R - I D 1 2 ) 2 + u I 2 I N ) ,
p ( I , ϕ ) = J p ( u R , u I ) .
J = | u R I u I I u R ϕ u I ϕ | = 1 2 .
p ( I , ϕ ) = 1 2 π I N exp ( - ( I + I D ) I N ) exp ( 2 ( I I D ) 1 2 cos ϕ I N ) .
p ( I ) = ( r + 1 ) exp [ - r - I ( r + 1 ) ] I 0 { 2 [ I r ( r + 1 ) ] 1 2 } ,
r + 1 = ( I D + I N ) / I N ,
σ I = ( 2 r + 1 ) 1 2 r + 1 ,
σ I = ( 2 r ) 1 2 .