Abstract

Measurements have been made of the absorptivity of 31 low-loss liquids by a new technique. The change of refractive index of the sample caused by the temperature change due to absorption of light was measured with an interferometer. Absorptivity values as small as 10−5 cm−1 have been measured. The lowest values were obtained for carbon tetrachloride, chloroform, and bromobenzene. The absorptivity of heavy water is <5×10−5 cm−1, 1/60 that of ordinary water at the same wavelength. Measurements were made at 6328 Å.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
    [CrossRef]
  2. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
    [CrossRef]
  3. D. Solimini, J. Appl. Phys. 37, 3314 (1966).
    [CrossRef]
  4. D. Solimini, Appl. Opt. 5, 1931 (1966).
    [CrossRef] [PubMed]
  5. K. E. Rieckhoff, Appl. Phys. Letters 9, 87 (1966).
    [CrossRef]
  6. K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
    [CrossRef]
  7. R. L. Carman and P. L. Kelley, Appl. Phys. Letters 12, 241 (1968).
    [CrossRef]
  8. F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
    [CrossRef]
  9. P. R. Longaker and M. M. Litvak, J. Appl. Phys. 40, 403 (1969).
    [CrossRef]
  10. W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
    [CrossRef]
  11. F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
    [CrossRef]
  12. H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics (Dover, New York, 1963).
  13. The right-hand side of Eq. (15) is smaller by a factor of 1/π than that given in Ref. 1 owing to an error in Ref. 1. This may account in part for the relatively high values for α from Ref. 2 shown in Table II.
  14. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  15. J. Stone, J. Appl. Phys. 42, 2396 (1971).
    [CrossRef]
  16. International Critical Tables (McGraw–Hill, New York, 1933).
  17. J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950).
  18. Landolt-Bornstein, Zahlenverte und Funktionen, II Band, 4 Teil (Springer, Berlin, 1950).
  19. G. Szwissy, Ann. Physik 68, 150 (1922).
  20. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
    [CrossRef]
  21. R. L. Schmidt, J. Colloid. Interface Sci. 27, 516 (1968).
    [CrossRef]
  22. Reference 18, 8 Teil (1962).
  23. M. S. Malmberg and E. R. Lippincott, J. Colloid. Interface Sci. 27, 591 (1968).
    [CrossRef]
  24. S. A. Sullivan, J. Opt. Soc. Am. 53, 962 (1963).
    [CrossRef]
  25. W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968).
    [CrossRef]
  26. E. N. Dorsey, Properties of Ordinary Water Substance (Reinhold, New York, 1940).

1971 (1)

J. Stone, J. Appl. Phys. 42, 2396 (1971).
[CrossRef]

1970 (1)

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

1969 (2)

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

P. R. Longaker and M. M. Litvak, J. Appl. Phys. 40, 403 (1969).
[CrossRef]

1968 (5)

K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
[CrossRef]

R. L. Carman and P. L. Kelley, Appl. Phys. Letters 12, 241 (1968).
[CrossRef]

R. L. Schmidt, J. Colloid. Interface Sci. 27, 516 (1968).
[CrossRef]

M. S. Malmberg and E. R. Lippincott, J. Colloid. Interface Sci. 27, 591 (1968).
[CrossRef]

W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968).
[CrossRef]

1967 (1)

W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
[CrossRef]

1966 (4)

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

1964 (1)

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
[CrossRef]

1963 (1)

1922 (1)

G. Szwissy, Ann. Physik 68, 150 (1922).

Boyko, R. W.

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

Callen, W. R.

W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
[CrossRef]

Carman, R. L.

R. L. Carman and P. L. Kelley, Appl. Phys. Letters 12, 241 (1968).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics (Dover, New York, 1963).

Dabby, F. W.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

Dorsey, E. N.

E. N. Dorsey, Properties of Ordinary Water Substance (Reinhold, New York, 1940).

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
[CrossRef]

Glass, A. J.

K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Gustafson, T. K.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

Huth, B. G.

W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
[CrossRef]

Irvine, W. M.

W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics (Dover, New York, 1963).

Kelley, P. L.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

R. L. Carman and P. L. Kelley, Appl. Phys. Letters 12, 241 (1968).
[CrossRef]

Kogelnik, H.

Kohanzadeh, Y.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
[CrossRef]

Li, T.

Lippincott, E. R.

M. S. Malmberg and E. R. Lippincott, J. Colloid. Interface Sci. 27, 591 (1968).
[CrossRef]

Litvak, M. M.

P. R. Longaker and M. M. Litvak, J. Appl. Phys. 40, 403 (1969).
[CrossRef]

Longaker, P. R.

P. R. Longaker and M. M. Litvak, J. Appl. Phys. 40, 403 (1969).
[CrossRef]

Malmberg, M. S.

M. S. Malmberg and E. R. Lippincott, J. Colloid. Interface Sci. 27, 591 (1968).
[CrossRef]

McLean, K. A.

K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
[CrossRef]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
[CrossRef]

Pantell, R. H.

W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
[CrossRef]

Pollack, J. B.

W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968).
[CrossRef]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Rieckhoff, K. E.

K. E. Rieckhoff, Appl. Phys. Letters 9, 87 (1966).
[CrossRef]

Schmidt, R. L.

R. L. Schmidt, J. Colloid. Interface Sci. 27, 516 (1968).
[CrossRef]

Shank, C. V.

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

Sica, L.

K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
[CrossRef]

Solimini, D.

D. Solimini, J. Appl. Phys. 37, 3314 (1966).
[CrossRef]

D. Solimini, Appl. Opt. 5, 1931 (1966).
[CrossRef] [PubMed]

Stone, J.

J. Stone, J. Appl. Phys. 42, 2396 (1971).
[CrossRef]

Sullivan, S. A.

Szwissy, G.

G. Szwissy, Ann. Physik 68, 150 (1922).

Timmermans, J.

J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950).

Whinnery, J. R.

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
[CrossRef]

Ann. Physik (1)

G. Szwissy, Ann. Physik 68, 150 (1922).

Appl. Opt. (2)

Appl. Phys. Letters (6)

K. E. Rieckhoff, Appl. Phys. Letters 9, 87 (1966).
[CrossRef]

K. A. McLean, L. Sica, and A. J. Glass, Appl. Phys. Letters 13, 369 (1968).
[CrossRef]

R. L. Carman and P. L. Kelley, Appl. Phys. Letters 12, 241 (1968).
[CrossRef]

W. R. Callen, B. G. Huth, and R. H. Pantell, Appl. Phys. Letters 11, 103 (1967).
[CrossRef]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, Appl. Phys. Letters 16, 362 (1970).
[CrossRef]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl. Phys. Letters 5, 141 (1964).
[CrossRef]

Icarus (1)

W. M. Irvine and J. B. Pollack, Icarus 8, 324 (1968).
[CrossRef]

IEEE J. (1)

F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, IEEE J. QE-5, 516 (1969).
[CrossRef]

J. Appl. Phys. (4)

P. R. Longaker and M. M. Litvak, J. Appl. Phys. 40, 403 (1969).
[CrossRef]

D. Solimini, J. Appl. Phys. 37, 3314 (1966).
[CrossRef]

J. Stone, J. Appl. Phys. 42, 2396 (1971).
[CrossRef]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

J. Colloid. Interface Sci. (2)

R. L. Schmidt, J. Colloid. Interface Sci. 27, 516 (1968).
[CrossRef]

M. S. Malmberg and E. R. Lippincott, J. Colloid. Interface Sci. 27, 591 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (8)

Reference 18, 8 Teil (1962).

E. N. Dorsey, Properties of Ordinary Water Substance (Reinhold, New York, 1940).

International Critical Tables (McGraw–Hill, New York, 1933).

J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950).

Landolt-Bornstein, Zahlenverte und Funktionen, II Band, 4 Teil (Springer, Berlin, 1950).

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968).
[CrossRef]

H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics (Dover, New York, 1963).

The right-hand side of Eq. (15) is smaller by a factor of 1/π than that given in Ref. 1 owing to an error in Ref. 1. This may account in part for the relatively high values for α from Ref. 2 shown in Table II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical arrangement for loss measurement: (a) He–Ne laser, 6328 Å, (b) water cell, (c) plate 1, (d) sample cell, (e) plate 2, (f) interferometer beam, (g) reference beam, (h) signal detector, (i) mirror, (j) reference detector.

Fig. 2
Fig. 2

Transient response of interferometer for ethanol, ϕ change versus time.

Fig. 3
Fig. 3

Transient response of interferometer for carbon tetrachloride. Gain is ten times as great as in Fig. 2. Line shows what the initial slope Δϕt should be for absorptivity of 10−5 cm−1. Drift of trace limits minimum-resolvable signal to 10−5 cm−1.

Tables (1)

Tables Icon

Table I Experimental results of absorptivity α and published data of scattering loss αS.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d P P = - ( α + α S ) d x .
P = P 0 exp { - ( α + α S ) x } ,
P = P 0 [ 1 - ( α + α S ) x ] ,
Q ( r ) d r = 2 α P 4.2 π w 0 2 exp ( - 2 r 2 w 0 2 ) 2 π r d r ,
0 Q ( r ) d r = α P 4.2 cal / cm s .
G ( r , r , t ) = 1 4 π k t exp ( - ( r 2 + r 2 ) 4 D t ) I 0 ( r r 2 D t ) ,
I 0 ( x ) = J 0 ( i x ) ,
T ( r , t ) = 0 d r 0 t d t Q ( r ) G ( r , r , t )
= 2 α P 4.2 π w 0 2 1 4 π k 0 d r 0 t d t exp ( - 2 r 2 w 0 2 ) 2 π r × exp [ - ( r 2 + r 2 ) / 4 D t ] t I 0 ( r r 2 D t ) .
0 exp ( - a 2 u 2 ) J 0 ( b u ) u d u = 1 2 a 2 exp ( - b 2 4 a 2 ) ,
Δ T ( r , t ) = α P 4.2 π ρ c 0 t d t 1 1 2 w 0 2 + 4 D t × exp ( - r 2 4 D t + 32 D 2 t 2 / ω 0 2 ) ,
Δ T ( r , t ) = - α P 4.2 π ρ c 1 4 D A B d y exp ( - r 2 y ) y
= α P 16.8 π k [ Ei ( - A r 2 ) - Ei ( - B r 2 ) ] ,
Ei ( - x ) ln γ x - x = ln γ + ln x - x ,             γ = 1.781.
Δ T ( r , t ) α P 16.8 π k [ ln ( 1 + 8 D t w 0 2 ) - 1 w 0 2 / 8 D t + 1 2 r 2 w 0 2 ] .
t c w 0 2 / 4 D .
Δ T ( r , t ) α P 16.8 π k 2 t t c ,
Δ T ( r , t ) α P 16.8 π k ln 2 t t c .
ϕ = 2 π d λ / n ,
Δ ϕ = 2 π d λ Δ n = 2 π d λ n T Δ T .
Δ ϕ = 2 π λ ( n d T + d n T ) Δ T
= 2 π λ d ( 1 3 n β + n T ) Δ T ,
α sample α ref = [ ( n T ) / ρ c ] ref [ ( n T ) / ρ c ] sample ( Δ ϕ Δ t ) sample ( Δ ϕ Δ t ) ref .