Abstract

An evacuated high-resolution Czerny–Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters γ0 for lines in the R branch of the ν3 fundamental of 12C16O2 at 298 and at 207 K. The values of γ0 at 207 K are greater than those to be expected on the basis of a fixed collision cross section σ. The approximate ratio of the measured cross sections for a given line is σ(T1)/σ(T2) = T2/T1; although this relation holds for the average of all lines measured, the cross-section ratio is greater than the temperature ratio for lines near the band center and less than the temperature ratio for lines in the wings of the band.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Madden, J. Chem. Phys. 35, 2083 (1961).
    [Crossref]
  2. D. E. Burch, D. A. Gryvnak, and R. R. Patty, J. Opt. Soc. Am. 58, 335 (1968).
    [Crossref]
  3. R. Herman and R. Wallis, J. Chem. Phys. 23, 637 (1955).
    [Crossref]
  4. H. Goldring and W. Benesch, Can. J. Phys. 40, 1801 (1962).
    [Crossref]
  5. G. M. Hoover and D. Williams, J. Opt. Soc. Am. 59, 28 (1969).
    [Crossref]
  6. R. Ely and T. K. McCubbin, Appl. Opt. 9, 1230 (1970).
    [Crossref] [PubMed]
  7. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
    [Crossref]
  8. J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
    [Crossref]
  9. H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
    [Crossref]
  10. J. N. Howard, D. E. Burch, and D. Williams, J. Opt. Soc. Am. 46, 186 (1956).
    [Crossref]
  11. R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
    [Crossref]
  12. L. D. Kaplan and D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
    [Crossref]
  13. D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
    [Crossref]
  14. D. E. Burch, D. A. Gryvnak, and D. Williams, Appl. Opt. 1, 759 (1962).
    [Crossref]
  15. G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
    [Crossref]
  16. P. W. Anderson, Phys. Rev. 76, 647 (1949).
    [Crossref]
  17. C. J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiative Transfer 2, 45 (1962).
    [Crossref]

1970 (1)

1969 (2)

G. M. Hoover and D. Williams, J. Opt. Soc. Am. 59, 28 (1969).
[Crossref]

G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
[Crossref]

1968 (1)

1962 (4)

H. Goldring and W. Benesch, Can. J. Phys. 40, 1801 (1962).
[Crossref]

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

C. J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiative Transfer 2, 45 (1962).
[Crossref]

D. E. Burch, D. A. Gryvnak, and D. Williams, Appl. Opt. 1, 759 (1962).
[Crossref]

1961 (2)

H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[Crossref]

R. P. Madden, J. Chem. Phys. 35, 2083 (1961).
[Crossref]

1956 (2)

1955 (1)

R. Herman and R. Wallis, J. Chem. Phys. 23, 637 (1955).
[Crossref]

1951 (1)

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

1949 (1)

P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

1944 (1)

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[Crossref]

1913 (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Anderson, P. W.

P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

Aoki, T.

G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
[Crossref]

Babrov, H. J.

Benedict, W. S.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Benesch, W.

H. Goldring and W. Benesch, Can. J. Phys. 40, 1801 (1962).
[Crossref]

Burch, D. E.

Crawford, B. L.

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

Curnutte, B.

C. J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiative Transfer 2, 45 (1962).
[Crossref]

Dale, E. B.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[Crossref]

Eggers, D. F.

L. D. Kaplan and D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[Crossref]

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

Ely, R.

Goldring, H.

H. Goldring and W. Benesch, Can. J. Phys. 40, 1801 (1962).
[Crossref]

Gryvnak, D. A.

Herman, R.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

R. Herman and R. Wallis, J. Chem. Phys. 23, 637 (1955).
[Crossref]

Hoover, G. M.

Howard, J. N.

Kaplan, L. D.

L. D. Kaplan and D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[Crossref]

Ladenberg, R.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Madden, R. P.

R. P. Madden, J. Chem. Phys. 35, 2083 (1961).
[Crossref]

McCubbin, T. K.

Moore, G. E.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Nielsen, J. R.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[Crossref]

Patty, R. R.

Reiche, F.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Silverman, S.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Tanaka, M.

G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
[Crossref]

Thornton, V.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[Crossref]

Tsao, C. J.

C. J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiative Transfer 2, 45 (1962).
[Crossref]

Wallis, R.

R. Herman and R. Wallis, J. Chem. Phys. 23, 637 (1955).
[Crossref]

Williams, D.

Yamamoto, G.

G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
[Crossref]

Ann. Physik (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Appl. Opt. (2)

Astrophys. J. (1)

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astrophys. J. 135, 277 (1962).
[Crossref]

Can. J. Phys. (1)

H. Goldring and W. Benesch, Can. J. Phys. 40, 1801 (1962).
[Crossref]

J. Chem. Phys. (4)

R. P. Madden, J. Chem. Phys. 35, 2083 (1961).
[Crossref]

L. D. Kaplan and D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[Crossref]

D. F. Eggers and B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[Crossref]

R. Herman and R. Wallis, J. Chem. Phys. 23, 637 (1955).
[Crossref]

J. Opt. Soc. Am. (4)

J. Quant. Spectrosc. Radiative Transfer (2)

C. J. Tsao and B. Curnutte, J. Quant. Spectrosc. Radiative Transfer 2, 45 (1962).
[Crossref]

G. Yamamoto, M. Tanaka, and T. Aoki, J. Quant. Spectrosc. Radiative Transfer 9, 371 (1969).
[Crossref]

Phys. Rev. (1)

P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

Rev. Mod. Phys. (1)

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the source assembly and the Czerny–Turner spectrograph.

Fig. 2
Fig. 2

The components of the absorption cell designed for work at reduced temperatures.

Fig. 3
Fig. 3

Typical spectral transmittance curves. Panel A: transmittance of a pure CO2 sample for a total pressure of 0.18 torr and an effective path length of 2000 cm. Panel B: transmittance of CO2 at a partial pressure of 3.27 torr in a 0.5-cm cell with N2 added to give a total pressure of 1 atm. Panel C: transmittance of pure CO2 at a pressure of 20 torr in a 10-cm absorption cell.

Fig. 4
Fig. 4

Measured line strengths S for lines in the R branch of the ν3 fundamental of CO2.

Fig. 5
Fig. 5

Measured values of half-width parameter γ0 for lines in the R branch of the ν3 fundamental of CO2 for temperatures of 207 and 298 K. The indicated uncertainty for each point is the sum of the probable error for measurements in the linear region and the probable error for measurements in the square-root region.

Fig. 6
Fig. 6

Self-broadening parameters γ0 for various rotational lines in CO2 samples at laboratory temperatures. Present results are given by circles. Madden’s results for the ν2 fundamentals are given by triangles. The results of Burch et al. for a combination band are given by the squares.

Tables (1)

Tables Icon

Table I Line strengths S, self-broadening parameters γ0, and collision cross sections σ for CO2 at 298 and 207 K.a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

w 0 = p a z ( 273 / T ) ,
k ( ν ) = S γ / π [ ( ν - ν 0 ) 2 + γ 2 ] ,
W = A ( ν ) d ν
W = A ( ν ) d ν = { 1 - exp [ - k ( ν ) w 0 ] } d ν = A ( ν ) d ν ,
W = 2 π γ L ( x ) ,
W = S w 0             for             x 1             ( linear region ) ,
W = 2 ( S w 0 γ ) 1 2             for             x 1             ( square-root region ) .
S J ( 207 K ) = S J ( 298 K ) × Q ( 298 K ) Q ( 207 K ) × exp ( - E J / k × 207 K ) exp ( - E J / k × 298 K ) ,
γ 0 = f c / 2 π = ( n v ¯ σ ) / 2 π = [ n ( 2 k T / μ ) 1 2 σ ] / 2 π ,
γ 0 ( T 1 ) · T 1 1 2 = γ 0 ( T 2 ) T 2 1 2 · ( constant-cross-section approximation ) ,
σ ( T 1 ) · T 1 = σ ( T 2 ) · T 2 .