Abstract

Four methods of heterochromatic photometry were employed, using the same four observers in each case. These were (i) two types of direct heterochromatic photometry (direct comparison with white, and step by step), (ii) flicker photometry, and (iii) the minimally distinct-border method (MDB). The MDB method is shown to yield results that are linear and obey Abney’s law. Flicker and MDB methods generate relative luminous-efficiency functions that agree well with each other and also with the CIE standard observer as modified by Judd; the methods of direct heterochromatic photometry yield data that agree fairly well with each other, whereas they differ greatly from the data obtained by flicker or MDB. Luminous efficiency as measured by the direct methods seems to receive a contribution from two sources, (a) achromatic signals of the photopic visual system, which exclusively determine the MDB setting, and (b) chromatic signals of the visual system, which produce extra brightness, the amount of which is related to the saturation of the stimulus used.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See Y. LeGrand, Light, Colour and Vision, Second ed., translated by R. W. G. Hunt, J. W. T. Walsh, and F. R. W. Hunt (Chapman and Hall, London, 1968), Ch. 6;also J. W. T. Walsh, Photometry, 3d ed. (Dover, New York, 1965), for detailed discussions of the problems raised here.
  2. G. Heath, Science 128, 775 (1958).
    [Crossref] [PubMed]
  3. J. L. Brown, L. Phares, and D. E. Fletcher, J. Opt. Soc. Am. 50, 950 (1960).
    [Crossref]
  4. H. E. Ives, Phil. Mag. 24, 149 (1912).
  5. J. Guild, in Discussion on Vision (Physical Society, London, 1932);in Sources of Color Science, edited by D. L. MacAdam (MIT Press, Cambridge, Mass., 1971), p. 213.
  6. The bracketed portions of this quotation have been supplied by us.
  7. R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
    [Crossref] [PubMed]
  8. P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
    [Crossref] [PubMed]
  9. D. B. Judd, in CIE (Commission Internationale de l’Eclairage), Proceedings, 12th Session Stockholm, 1951 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1952), Vol. 1, Pt. 7, p. 11.
  10. P. K. Kaiser, J. Opt. Soc. Am. 61, 966 (1971).
    [Crossref] [PubMed]
  11. A. Dresler, Trans. Illum. Eng. Soc. (London) 18, 141 (1953).
  12. C. L. Sanders and G. Wyszecki, in CIE(Commission Internationale de l’Eclairage)Proceedings, 15th Session Vienna, 1963 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1964), Vol. B, p. 221.
  13. S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
    [Crossref] [PubMed]
  14. R. M. Boynton and T. S. Greenspon, Vision Res. 12, 495 (1972).
    [Crossref] [PubMed]

1972 (1)

R. M. Boynton and T. S. Greenspon, Vision Res. 12, 495 (1972).
[Crossref] [PubMed]

1971 (2)

P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
[Crossref] [PubMed]

P. K. Kaiser, J. Opt. Soc. Am. 61, 966 (1971).
[Crossref] [PubMed]

1969 (1)

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

1968 (1)

R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
[Crossref] [PubMed]

1960 (1)

1958 (1)

G. Heath, Science 128, 775 (1958).
[Crossref] [PubMed]

1953 (1)

A. Dresler, Trans. Illum. Eng. Soc. (London) 18, 141 (1953).

1912 (1)

H. E. Ives, Phil. Mag. 24, 149 (1912).

Boynton, R. M.

R. M. Boynton and T. S. Greenspon, Vision Res. 12, 495 (1972).
[Crossref] [PubMed]

P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
[Crossref] [PubMed]

R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
[Crossref] [PubMed]

Brown, J. L.

Donley, N. J.

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Dresler, A.

A. Dresler, Trans. Illum. Eng. Soc. (London) 18, 141 (1953).

Fletcher, D. E.

Greenspon, T. S.

R. M. Boynton and T. S. Greenspon, Vision Res. 12, 495 (1972).
[Crossref] [PubMed]

Guild, J.

J. Guild, in Discussion on Vision (Physical Society, London, 1932);in Sources of Color Science, edited by D. L. MacAdam (MIT Press, Cambridge, Mass., 1971), p. 213.

Guth, S. L.

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Heath, G.

G. Heath, Science 128, 775 (1958).
[Crossref] [PubMed]

Herzberg, P. A.

P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
[Crossref] [PubMed]

Ives, H. E.

H. E. Ives, Phil. Mag. 24, 149 (1912).

Judd, D. B.

D. B. Judd, in CIE (Commission Internationale de l’Eclairage), Proceedings, 12th Session Stockholm, 1951 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1952), Vol. 1, Pt. 7, p. 11.

Kaiser, P. K.

P. K. Kaiser, J. Opt. Soc. Am. 61, 966 (1971).
[Crossref] [PubMed]

P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
[Crossref] [PubMed]

R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
[Crossref] [PubMed]

LeGrand, Y.

See Y. LeGrand, Light, Colour and Vision, Second ed., translated by R. W. G. Hunt, J. W. T. Walsh, and F. R. W. Hunt (Chapman and Hall, London, 1968), Ch. 6;also J. W. T. Walsh, Photometry, 3d ed. (Dover, New York, 1965), for detailed discussions of the problems raised here.

Marrocco, R. T.

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

Phares, L.

Sanders, C. L.

C. L. Sanders and G. Wyszecki, in CIE(Commission Internationale de l’Eclairage)Proceedings, 15th Session Vienna, 1963 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1964), Vol. B, p. 221.

Wyszecki, G.

C. L. Sanders and G. Wyszecki, in CIE(Commission Internationale de l’Eclairage)Proceedings, 15th Session Vienna, 1963 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1964), Vol. B, p. 221.

J. Opt. Soc. Am. (2)

Phil. Mag. (1)

H. E. Ives, Phil. Mag. 24, 149 (1912).

Science (2)

G. Heath, Science 128, 775 (1958).
[Crossref] [PubMed]

R. M. Boynton and P. K. Kaiser, Science 161, 366 (1968).
[Crossref] [PubMed]

Trans. Illum. Eng. Soc. (London) (1)

A. Dresler, Trans. Illum. Eng. Soc. (London) 18, 141 (1953).

Vision Res. (3)

S. L. Guth, N. J. Donley, and R. T. Marrocco, Vision Res. 9, 537 (1969).
[Crossref] [PubMed]

R. M. Boynton and T. S. Greenspon, Vision Res. 12, 495 (1972).
[Crossref] [PubMed]

P. K. Kaiser, P. A. Herzberg, and R. M. Boynton, Vision Res. 11, 953 (1971).
[Crossref] [PubMed]

Other (5)

D. B. Judd, in CIE (Commission Internationale de l’Eclairage), Proceedings, 12th Session Stockholm, 1951 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1952), Vol. 1, Pt. 7, p. 11.

See Y. LeGrand, Light, Colour and Vision, Second ed., translated by R. W. G. Hunt, J. W. T. Walsh, and F. R. W. Hunt (Chapman and Hall, London, 1968), Ch. 6;also J. W. T. Walsh, Photometry, 3d ed. (Dover, New York, 1965), for detailed discussions of the problems raised here.

J. Guild, in Discussion on Vision (Physical Society, London, 1932);in Sources of Color Science, edited by D. L. MacAdam (MIT Press, Cambridge, Mass., 1971), p. 213.

The bracketed portions of this quotation have been supplied by us.

C. L. Sanders and G. Wyszecki, in CIE(Commission Internationale de l’Eclairage)Proceedings, 15th Session Vienna, 1963 (Bureau Central CIE, 57 rue de Pépinère, Paris, 1964), Vol. B, p. 221.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

F. 1
F. 1

Optical schematic of one channel. F: heat-absorbing filter; IW: interference wedge; S: visual field stop; NW: neutral density wedge; M: mirror; VF: visual field. V is a magnesium carbonate block; the image formed upon it is viewed through another mirror, not shown.

F. 2
F. 2

CIE chromaticity diagram showing mixture lines for the various spectral colors used in the experiment, and the location of the white reference stimulus in the chromaticity plane.

F. 3
F. 3

Additivity of binary mixtures, using the MDB criterion, for seven pairs of spectral stimuli. Open circles: λ1 was adjusted; open triangles: λ2 was adjusted, (a) λ1 = 480 nm, λ2 = 520 nm; (b) λ1 = 480 nm, λ2 = 620 nm; (c) λ1 = 500 nm, λ2 = 600 nm; (d) λ1 = 510 nm, λ2 = 580 nm; (e) λ1 = 480 nm, λ2 = 570 nm; (f) λ1 = 500 nm, λ2 = 540 nm; (g) λ1 = 490 nm, λ2 = 540 nm.

F. 4
F. 4

Maximum obtainable relative radiance, plotted as a function of wavelength.

F. 5
F. 5

Relative spectral-luminous-efficiency functions for four observers: open triangle—HGW; open square—RD; open circle—MS; cross—TSG. The solid function represents the mean data of the four observers. Criterion: equal brightness (step by step).

F. 6
F. 6

Same as Fig. 5, but for the equal-brightness (direct comparison) condition.

F. 7
F. 7

Same as Fig. 5, but for the MDB criterion.

F. 8
F. 8

Same as Fig, 5. but for the flicker criterion.

F. 9
F. 9

Mean curves of Figs. 58 are replotted here upon the same graph. Open circle—equal brightness (direct comparison), open triangle—equal brightness (step by step), cross—minimum flicker, open square MDB.

F. 10
F. 10

Results for the minimum-flicker criterion (solid line) compared to the CIE standard observer, as modified by Judd (circles).

F. 11
F. 11

Same as Fig. 10, but for the MDB criterion (solid line).

F. 12
F. 12

Luminous efficiency for the equal-brightness (step-by-step) criterion, plotted relative to that for the flicker criterion for four subjects: open triangle—HGW; open square—RD; open circle—MS; cross—TSG. The ratio is set to 1.0 at the minimum of the function (solid curve) describing the mean values for the four observers.

F. 13
F. 13

Same as Fig. 12, but for the equal-brightness (direct comparison) condition.

F. 14
F. 14

Same as Fig. 12, but for the MDB criterion.

F. 15
F. 15

Frequency distribution of neutral density wedge settings. Four wavelengths are selected, and the spread of the results for equal brightness matches (direct comparison), MDB, and flicker are shown in the top, middle, and bottom sections of the figure, respectively. The relative horizontal displacement of the various distributions is without significance. Class intervals are 0.02 density units.

Tables (1)

Tables Icon

Table I Retinal illuminance in photopic trolands corresponding to maximum available radiance at selected wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = K L e λ V λ d λ ,