Abstract

Vertical sinusoidal gratings were viewed in masking noise consisting of vertical stripes spread along the horizontal direction. Masking functions were obtained while varying the grating frequency relative to various one-octave-wide bands of noise. These functions closely resemble curves derived from previous experiments on adaptation to gratings. Masking was also measured as a function of the width of a band of noise centered on the grating frequency. Masking increased as the band was widened up to approximately ±1 octave; masking did not increase further when the band was widened beyond this range. The results demonstrate that a grating is masked only by noise whose spatial frequencies are similar to the grating frequency. The experiments provide further indication of the existence of channels in the visual system that are selectively tuned to different spatial frequencies.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).
  2. C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).
  3. F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968);see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964);F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).
  4. N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).
    [Crossref] [PubMed]
  5. M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).
    [Crossref] [PubMed]
  6. C. S. Harris, Psychon. Sci. 21, 350 (1970);C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971);C. F. Stromeyer, Vision Res. 12, 717 (1972).
    [Crossref] [PubMed]
  7. A. Pantle and R. Sekuler, Science 162, 1146 (1968).
    [Crossref] [PubMed]
  8. C. Blakemore and P. Sutton, Science 166, 245 (1969).
    [Crossref] [PubMed]
  9. C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).
  10. von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower.[G. von Békésy, Physik Z. 30, 115 (1929);reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]
  11. S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
    [PubMed]
  12. D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).
  13. C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).
  14. F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).
  15. F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).
  16. F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).
  17. H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
    [Crossref]
  18. H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).
    [Crossref]
  19. F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).
  20. H. Pollehn and H. Roehrig, J. Opt. Soc. Am. 60, 842 (1970).
    [Crossref] [PubMed]
  21. W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.
  22. J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
    [Crossref]
  23. F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).
  24. D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).
    [Crossref]
  25. Fletcher’s original measurements using this method were quite variable. However, Scharf, in reviewing recent studies on the critical band in audition, concludes that,“Despite the apparent confusion of intensity discrimination and masking, masking by narrow-band noise can provide adequate estimates of critical bandwidth, as evidenced by the overall agreement of Greenwood’s, Hamilton’s, and van der Brink’s measures with all the other measures of the critical band.” Pp. 167–168 in B. Scharf, in Foundations of Modern Auditory Theory, Vol. 1, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.
  26. D. N. Robinson, Science 154, 157 (1966).
    [Crossref] [PubMed]
  27. M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).
  28. H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).
  29. C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
    [Crossref] [PubMed]
  30. L. E. Lipetz, Vision Res. 9, 1205 (1969)
    [Crossref] [PubMed]
  31. D. H. Kelly, J. Opt. Soc. Am. 56, 1628 (1966).
    [Crossref]
  32. If a sinusoidal grating L0[1+m cos(2πf0x+ϕ] does not extend to infinity in the x direction, but is truncated by an aperture of width A, such thatf(x)=[mcos(2πf0x+ϕ)]rect(x/A),when the constant term is neglected, whererect(x)=1for|x|≤12=0for|x|>12,then F(f), the Fourier transform of f(x), will be the convolution of the Fourier transform of the grating and aperture functions, yieldingF(f)=mA2[eiϕsinπA(f−f0)πA(f−f0)+e−iϕsinπA(f+f0)πA(f+f0)].If A = N/f0, where N is the number of cycles of the grating that fell in aperture A,then at f = f0/3 (i.e., 1.5 octave below f0) for ϕ = 0, f0 = 2.5 cycles/deg, and A = 2.5 deg; N = 6.25 andF(f)/F(f0)=−23dB.For other references, see D. H. Kelly, J. Opt. Soc. Am. 60, 98 (1970).
    [Crossref]
  33. E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
    [Crossref]
  34. F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).
    [Crossref] [PubMed]
  35. J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
    [Crossref] [PubMed]
  36. O. Bryngdahl, Vision Res. 6, 553 (1966).
    [Crossref] [PubMed]

1971 (2)

1970 (6)

1969 (6)

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

C. Blakemore and P. Sutton, Science 166, 245 (1969).
[Crossref] [PubMed]

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
[Crossref] [PubMed]

L. E. Lipetz, Vision Res. 9, 1205 (1969)
[Crossref] [PubMed]

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

1968 (4)

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968);see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964);F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
[Crossref] [PubMed]

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

A. Pantle and R. Sekuler, Science 162, 1146 (1968).
[Crossref] [PubMed]

1966 (5)

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

D. N. Robinson, Science 154, 157 (1966).
[Crossref] [PubMed]

O. Bryngdahl, Vision Res. 6, 553 (1966).
[Crossref] [PubMed]

D. H. Kelly, J. Opt. Soc. Am. 56, 1628 (1966).
[Crossref]

1965 (1)

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

1961 (1)

D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).
[Crossref]

1959 (1)

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

1957 (2)

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
[Crossref]

1953 (1)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

1952 (1)

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

1940 (1)

H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).
[Crossref]

1937 (1)

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
[Crossref]

1929 (1)

von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower.[G. von Békésy, Physik Z. 30, 115 (1929);reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]

1843 (1)

G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).

Alpern, M.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

Blakemore, C.

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

C. Blakemore and P. Sutton, Science 166, 245 (1969).
[Crossref] [PubMed]

Bryngdahl, O.

O. Bryngdahl, Vision Res. 6, 553 (1966).
[Crossref] [PubMed]

Campbell, F. W.

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).
[Crossref] [PubMed]

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968);see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964);F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

Cooper, G. F.

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

Daitch, J. M.

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
[Crossref] [PubMed]

Davenport, E. W.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

Davenport, W. B.

W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

David, H.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

Enroth-Cugell, C.

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

Fletcher, H.

H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).
[Crossref]

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
[Crossref]

Flottorp, G.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
[Crossref]

Gibson, A. R.

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
[Crossref] [PubMed]

Graham, N.

N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).
[Crossref] [PubMed]

Green, D. G.

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
[Crossref] [PubMed]

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

Greenwood, D. D.

D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).
[Crossref]

Harris, C. S.

C. S. Harris, Psychon. Sci. 21, 350 (1970);C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971);C. F. Stromeyer, Vision Res. 12, 717 (1972).
[Crossref] [PubMed]

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
[Crossref] [PubMed]

Hartline, H. K.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Hubel, D. H.

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

Jukes, J.

Kelly, D. H.

Kuffler, S. W.

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

Kulikowski, J. J.

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

Lipetz, L. E.

L. E. Lipetz, Vision Res. 9, 1205 (1969)
[Crossref] [PubMed]

Maffei, L.

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

Miller, P. H.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

Munson, W. A.

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
[Crossref]

Nachmias, J.

Ohm, G. S.

G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).

Pantle, A.

A. Pantle and R. Sekuler, Science 162, 1146 (1968).
[Crossref] [PubMed]

Pollehn, H.

Ratliff, F.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Robinson, D. N.

D. N. Robinson, Science 154, 157 (1966).
[Crossref] [PubMed]

Robson, J. G.

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).
[Crossref] [PubMed]

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968);see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964);F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

Roehrig, H.

Root, W. L.

W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

Sachs, M. B.

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).
[Crossref] [PubMed]

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

Scharf, B.

Fletcher’s original measurements using this method were quite variable. However, Scharf, in reviewing recent studies on the critical band in audition, concludes that,“Despite the apparent confusion of intensity discrimination and masking, masking by narrow-band noise can provide adequate estimates of critical bandwidth, as evidenced by the overall agreement of Greenwood’s, Hamilton’s, and van der Brink’s measures with all the other measures of the critical band.” Pp. 167–168 in B. Scharf, in Foundations of Modern Auditory Theory, Vol. 1, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.

Sekuler, R.

A. Pantle and R. Sekuler, Science 162, 1146 (1968).
[Crossref] [PubMed]

Stevens, S. S.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
[Crossref]

Sutton, P.

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

C. Blakemore and P. Sutton, Science 166, 245 (1969).
[Crossref] [PubMed]

Thompson, P. O.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

von Békésy, G.

von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower.[G. von Békésy, Physik Z. 30, 115 (1929);reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]

Webster, J. C.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

Zwicker, E.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
[Crossref]

Ann. Phys. Chem. (1)

G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).

J. Acoust. Soc. Am. (4)

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
[Crossref]

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
[Crossref]

D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).
[Crossref]

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
[Crossref]

J. Gen. Physiol. (2)

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

J. Neurophysiol. (1)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

J. Opt. Soc. Am. (5)

J. Physiol. (London) (10)

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968);see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964);F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

Physik Z. (1)

von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower.[G. von Békésy, Physik Z. 30, 115 (1929);reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]

Psychon. Sci. (1)

C. S. Harris, Psychon. Sci. 21, 350 (1970);C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971);C. F. Stromeyer, Vision Res. 12, 717 (1972).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).
[Crossref]

Science (4)

A. Pantle and R. Sekuler, Science 162, 1146 (1968).
[Crossref] [PubMed]

C. Blakemore and P. Sutton, Science 166, 245 (1969).
[Crossref] [PubMed]

D. N. Robinson, Science 154, 157 (1966).
[Crossref] [PubMed]

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
[Crossref] [PubMed]

Vision Res. (4)

L. E. Lipetz, Vision Res. 9, 1205 (1969)
[Crossref] [PubMed]

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
[Crossref] [PubMed]

O. Bryngdahl, Vision Res. 6, 553 (1966).
[Crossref] [PubMed]

N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).
[Crossref] [PubMed]

Other (2)

Fletcher’s original measurements using this method were quite variable. However, Scharf, in reviewing recent studies on the critical band in audition, concludes that,“Despite the apparent confusion of intensity discrimination and masking, masking by narrow-band noise can provide adequate estimates of critical bandwidth, as evidenced by the overall agreement of Greenwood’s, Hamilton’s, and van der Brink’s measures with all the other measures of the critical band.” Pp. 167–168 in B. Scharf, in Foundations of Modern Auditory Theory, Vol. 1, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.

W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

F. 1
F. 1

Demonstration of frequency-specific masking. (d) shows a one-octave-wide band of masking noise. (a), (b), and (c) show gratings whose spatial frequencies lie, respectively, 1.5 octave below the band, in the middle of the band, and 1.5 octave above the band [i.e., the spatial frequencies in (a) and (c) are, respectively, 1 4 and 4 times the frequencies in (b)]. (e), (f), and (g) show the gratings superimposed on the noise band of (d). The grating in the middle of the band is completely masked, whereas the gratings falling outside the band are visible through the noise.

F. 2
F. 2

Demonstration that only noise within a limited frequency band surrounding the grating is effective in masking the grating. The grating in (a) falls in the center of a band of noise ±1 octave wide, and the contrast is set so that the grating is just comfortably visible. (b) shows the same grating when the band is widened to ±2 octaves. Widening the band increases the average noise contrast, but it does not appear to increase the masking.

F. 3
F. 3

Contrast sensitivity of vertical gratings as a function of the average noise contrast of uniform broad-band noise consisting of vertical stripes of spatial frequency up to approximately 54 cycles/deg. ●———● grating frequency 1.77 cycles/deg, ×– – – –× 5.0 cycles/deg, ○———○ 10.0 cycles/deg. Verticalbars indicate ±1 S.E. of the mean (n = 3). The straight diagonal lines represent a function of exponent −1 for the idealized case wherein contrast sensitivity (reciprocal of grating contrast) varies linearly with the average noise contrast. Upper panel: subject RAP. Lower panel: subject CFS.

F. 4
F. 4

Relative threshold elevation of vertical gratings as a function of the upper cutoff, fmax, of low-pass noise consisting of vertical stripes (see inset). The relative threshold elevation is defined as the ratio of the contrast sensitivity of a grating viewed with and without noise minus 1. ▲———▲ grating frequency 2.5 cycles/deg, ■———■ 5.0 cycles/deg, ●———● 10.0 cycles/deg. Vertical bars indicate ±1 S.E. of the mean (n = 3). The average noise contrast was maintained at 0.15 when fmax was varied. Left panel: subject RAP. Right panel: subject CFS.

F. 5
F. 5

Relative threshold elevation of vertical gratings as a function of the lower cutoff, fmin, of high-pass noise consisting of vertical stripes (see inset). ▲———▲ grating frequency 2.5 cycles/deg, ■———■ 5 cycles/deg. Vertical bars indicate ±1 S.E. of the mean (n = 3). The average noise contrast was maintained at 0.15 when fmin was varied. Left panel: subject RAP. Right panel: subject CFS.

F. 6
F. 6

Relative threshold elevation of vertical gratings produced by various 1-octave-wide bands of noise consisting of vertical stripes. ●———● noise of 2.5–5 cycles/deg, average noise contrast 0.042; ○– – – –○ noise of 5–10 cycles/deg, contrast 0.059; ×———× noise of 10–20 cycles/deg, contrast 0.074. The vertical bars indicate ±1 S.E. of the mean (n = 3). Upper panel: subject MHW. Lower panel: subject CFS.

F. 7
F. 7

Relative threshold elevation data of Fig. 6 normalized for spatial frequency. Data points for gratings extending in spatial frequency above and below the noise bands have been shifted along the abscissa, so that all points at the lower cutoffs of the noise bands fall at 0 octave on the left half of the figure, and all points at the upper cutoffs fall at 0 octave on the right half. The octave scale thus shows how far away the gratings are from the noise bands (measured from the noise-band cutoffs). The continuous curve represents the function [ef2e−(2f)2]2, which was fitted by eye so that the peaks pass through the data points at 0 octaves. The curve is from Blakemore and Campbell’s (Ref. 2) study on the effects of adapting to gratings. Upper panel: subject MHW. Lower panel: subject CFS.

F. 8
F. 8

Relative threshold elevation of vertical gratings produced by 1-octave-wide band of low-frequency noise consisting of vertical stripes. Δ– – – –Δ noise of 0.625–1.25 cycles/deg, average noise contrast 0.095, stimulus field 20° wide from 50-cm viewing distance.▲———▲ noise of 1.25–2.5 cycles/deg, average noise contrast 0.059, stimulus field 10° wide from 100-cm viewing distance. Vertical bars indicate ±1 S.E. of the mean (n = 3). Upper panel: subject MHW. Lower panel: subject CFS.

F. 9
F. 9

Relative threshold elevation data of Fig. 8 normalized for spatial frequency in the same manner as Fig. 7. Upper panel: subject MHW. Lower panel: subject CFS.

F. 10
F. 10

Relative threshold elevation of vertical gratings as a function of the bandwidth of noise (consisting of vertical stripes) which is centered on the grating frequency (see inset). ×———× grating frequency 1.25 cycles/deg, ▲———▲ 2.5 cycles/deg, ■———■ 5 cycles/deg, ●———● 10 cycles/deg. The noise comprising the variable width bands was selected from the uniform broad-band noise, which was maintained at an average noise contrast of 0.15. The average noise contrast of the variable-width bands varied in proportion to the square root of their widths, measured on a linear frequency scale. Since spatial frequency was varied only by varying the viewing distance in this experiment, the average noise contrast of a given octave bandwidth was constant for all spatial frequencies of the test gratings. The measured values of average noise contrast were ±0.5 octave, 0.067; ±0.75 octave, 0.088; ±1 octave, 0.099; ±1.25 octave, 0.111; ±1.5 octave, 0.120; ±1.75 octave, 0.128; ±2 octave, 0.134. The vertical bars indicate ±1 S.E. of the mean (n = 3). Left panel: subject MHW. Right panel: subject CFS.

Tables (1)

Tables Icon

Table I Measured values of average noise contrast.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L max + L min / 2 ,
f(x)=[mcos(2πf0x+ϕ)]rect(x/A),
rect(x)=1for|x|12=0for|x|>12,
F(f)=mA2[eiϕsinπA(ff0)πA(ff0)+eiϕsinπA(f+f0)πA(f+f0)].
F(f)/F(f0)=23dB.