Abstract

Vertical sinusoidal gratings were viewed in masking noise consisting of vertical stripes spread along the horizontal direction. Masking functions were obtained while varying the grating frequency relative to various one-octave-wide bands of noise. These functions closely resemble curves derived from previous experiments on adaptation to gratings. Masking was also measured as a function of the width of a band of noise centered on the grating frequency. Masking increased as the band was widened up to approximately ±1 octave; masking did not increase further when the band was widened beyond this range. The results demonstrate that a grating is masked only by noise whose spatial frequencies are similar to the grating frequency. The experiments provide further indication of the existence of channels in the visual system that are selectively tuned to different spatial frequencies.

PDF Article

References

  • View by:
  • |
  • |

  1. G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).
  2. C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).
  3. F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968); see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964); F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).
  4. N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).
  5. M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).
  6. C. S. Harris, Psychon. Sci. 21, 350 (1970); C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971); C. F. Stromeyer III, Vision Res. 12, 717 (1972).
  7. A. Pantle and R. Sekuler, Science 162, 1146 (1968).
  8. C. Blakemore and P. Sutton, Science 166, 245 (1969).
  9. C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).
  10. von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower. [G. von Békésy, Physik Z. 30, 115 (1929); reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]
  11. S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
  12. D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).
  13. C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).
  14. F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).
  15. F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).
  16. F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).
  17. H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).
  18. H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).
  19. F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).
  20. H. Pollehn and H. Roehrig, J. Opt. Soc. Am. 60, 842 (1970).
  21. W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.
  22. J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).
  23. F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).
  24. D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).
  25. Fletcher's original measurements using this method were quite variable. However, Scharf, in reviewing recent studies on the critical band in audition, concludes that, "Despite the apparent confusion of intensity discrimination and masking, masking by narrow-band noise can provide adequate estimates of critical bandwidth, as evidenced by the overall agreement of Greenwood's, Hamilton's, and van der Brink's measures with all the other measures of the critical band." Pp. 167–168 in B. Scharf, in Foundations of Modern Auditory Theory, Vol. 1, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.
  26. D. N. Robinson, Science 154, 157 (1966).
  27. M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).
  28. H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).
  29. C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).
  30. L. E. Lipetz, Vision Res. 9, 1205 (1969)
  31. D. H. Kelly, J. Opt. Soc. Am. 56, 1628 (1966).
  32. If a sinusoidal grating L0[1+m cos(2π ƒ0x+Ø)] does not extend to infinity in the x direction, but is truncated by an aperture of width A, such that ƒ (x) = [m cos (2π ƒ0x+Ø)] rect (x/A), when the constant term is neglected, where rect [Equation] then F(ƒ), the Fourier transform of ƒ(x), will be the convolution of the Fourier transform of the grating and aperture functions, yielding [Equation] If A = N / ƒ0, where N is the number of cycles of the grating that fell in aperture A, then at ƒ = ƒ0/3 (i.e., 1.5 octave below ƒ0) for Ø= 0, ƒ0= 2.5 cycles/deg, and A = 2.5 deg; N = 6.25 and F (ƒ)/F0)=-23 dB. For other references, see D. H. Kelly, J. Opt. Soc. Am. 60, 98 (1970).
  33. E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).
  34. F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).
  35. J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).
  36. O. Bryngdahl, Vision Res. 6, 553 (1966).

Alpern, M.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

Békésy, von

von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower. [G. von Békésy, Physik Z. 30, 115 (1929); reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]

Blakemore, C.

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

C. Blakemore and P. Sutton, Science 166, 245 (1969).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

Bryngdahl, O.

O. Bryngdahl, Vision Res. 6, 553 (1966).

Campbell, F. W.

F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968); see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964); F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

Cooper, G. F.

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

Daitch, J. M.

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).

Davenport, E. W.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).

Davenport, Jr., W. B.

W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

David, H.

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

Enroth-Cugell, C.

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

Fletcher, H.

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).

H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).

Flottorp, G.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).

Gibson, A. R.

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).

Graham, N.

N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).

Green, D. G.

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

Greenwood, D. D.

D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).

Harris, C. S.

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).

C. S. Harris, Psychon. Sci. 21, 350 (1970); C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971); C. F. Stromeyer III, Vision Res. 12, 717 (1972).

Hartline, H. K.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Hubel, D. H.

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

Jukes, J.

F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).

Kelly, D. H.

D. H. Kelly, J. Opt. Soc. Am. 56, 1628 (1966).

Kuffler, S. W.

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).

Kulikowski, J. J.

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

Lipetz, L. E.

L. E. Lipetz, Vision Res. 9, 1205 (1969)

Maffei, L.

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

Miller, P. H.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).

Munson, W. A.

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).

Nachmias, J.

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).

F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).

Ohm, G. S.

G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).

Pantle, A.

A. Pantle and R. Sekuler, Science 162, 1146 (1968).

Pollehn, H.

H. Pollehn and H. Roehrig, J. Opt. Soc. Am. 60, 842 (1970).

Ratliff, F.

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

Robinson, D. N.

D. N. Robinson, Science 154, 157 (1966).

Robson, J. G.

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968); see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964); F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

Roehrig, H.

H. Pollehn and H. Roehrig, J. Opt. Soc. Am. 60, 842 (1970).

Root, W. L.

W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

Sachs, M. B.

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).

Sekuler, R.

A. Pantle and R. Sekuler, Science 162, 1146 (1968).

Stevens, S. S.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).

Sutton, P.

C. Blakemore and P. Sutton, Science 166, 245 (1969).

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

Thompson, P. O.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).

Webster, J. C.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

Zwicker, E.

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).

Other (36)

G. S. Ohm, Ann. Phys. Chem. 135, 497 (1843).

C. Blakemore and F. W. Campbell, J. Physiol. (London) 203, 237 (1969).

F. W. Campbell and J. G. Robson, J. Physiol. (London) 197, 551 (1968); see also J. G. Robson and F. W. Campbell, in Proceedings of the Symposium on the Physiological Basis of Form Discrimination (Laboratory of Psychology, Brown University, Providence, R. I., 1964); F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

N. Graham and J. Nachmias, Vision Res. 11, 251 (1971).

M. B. Sachs, J. Nachmias, and J. G. Robson, J. Opt. Soc. Am. 61, 1176 (1971).

C. S. Harris, Psychon. Sci. 21, 350 (1970); C. S. Harris, J. Opt. Soc. Am. 61, 689A (1971); C. F. Stromeyer III, Vision Res. 12, 717 (1972).

A. Pantle and R. Sekuler, Science 162, 1146 (1968).

C. Blakemore and P. Sutton, Science 166, 245 (1969).

C. Blakemore, J. Nachmias, and P. Sutton, J. Physiol. (London) 210, 727 (1970).

von Békésy has shown that listening for 2 min to an 800-Hz tone at a sound pressure of 10 dynes/cm2 both reduces the loudness of subsequently heard tones near 800 Hz and produces a pitch shift, so that tones higher than 800 Hz seem still higher and lower tones seem still lower. [G. von Békésy, Physik Z. 30, 115 (1929); reprinted in G. von Békésy, Experiments in Hearing, edited by E. G. Wever (McGraw–Hill, New York, 1960), pp. 354–368.]

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).

D. H. Hubel and T. N. Wiesel, J. Physiol. (London) 195, 215 (1968).

C. Enroth-Cugell and J. G. Robson, J. Physiol. (London) 187, 517 (1966).

F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell, J. Physiol. (London) 203, 223 (1969).

F. W. Campbell, G. F. Cooper, J. G. Robson, and M. B. Sachs, J. Physiol. (London) 204, 120–121P (1969).

F. W. Campbell and L. Maffei, J. Physiol. (London) 207, 635 (1970).

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 9, 1 (1937).

H. Fletcher, Rev. Mod. Phys. 12, 47 (1940).

F. W. Campbell and J. J. Kulikowski, J. Physiol. (London) 187, 437 (1966).

H. Pollehn and H. Roehrig, J. Opt. Soc. Am. 60, 842 (1970).

W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958), p. 49.

J. C. Webster, P. H. Miller, P. O. Thompson, and E. W. Davenport, J. Acoust. Soc. Am. 24, 147 (1952).

F. W. Campbell and D. G. Green, J. Physiol. (London) 181, 576 (1965).

D. D. Greenwood, J. Acoust. Soc. Am. 33, 484 (1961).

Fletcher's original measurements using this method were quite variable. However, Scharf, in reviewing recent studies on the critical band in audition, concludes that, "Despite the apparent confusion of intensity discrimination and masking, masking by narrow-band noise can provide adequate estimates of critical bandwidth, as evidenced by the overall agreement of Greenwood's, Hamilton's, and van der Brink's measures with all the other measures of the critical band." Pp. 167–168 in B. Scharf, in Foundations of Modern Auditory Theory, Vol. 1, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.

D. N. Robinson, Science 154, 157 (1966).

M. Alpern and H. David, J. Gen. Physiol. 43, 109 (1959).

H. K. Hartline and F. Ratliff, J. Gen. Physiol. 40, 357 (1957).

C. S. Harris and A. R. Gibson, Science 162, 1506 (1968).

L. E. Lipetz, Vision Res. 9, 1205 (1969)

D. H. Kelly, J. Opt. Soc. Am. 56, 1628 (1966).

If a sinusoidal grating L0[1+m cos(2π ƒ0x+Ø)] does not extend to infinity in the x direction, but is truncated by an aperture of width A, such that ƒ (x) = [m cos (2π ƒ0x+Ø)] rect (x/A), when the constant term is neglected, where rect [Equation] then F(ƒ), the Fourier transform of ƒ(x), will be the convolution of the Fourier transform of the grating and aperture functions, yielding [Equation] If A = N / ƒ0, where N is the number of cycles of the grating that fell in aperture A, then at ƒ = ƒ0/3 (i.e., 1.5 octave below ƒ0) for Ø= 0, ƒ0= 2.5 cycles/deg, and A = 2.5 deg; N = 6.25 and F (ƒ)/F0)=-23 dB. For other references, see D. H. Kelly, J. Opt. Soc. Am. 60, 98 (1970).

E. Zwicker, G. Flottorp, and S. S. Stevens, J. Acoust. Soc. Am. 29, 548 (1957).

F. W. Campbell, J. Nachmias, and J. Jukes, J. Opt. Soc. Am. 60, 555 (1970).

J. M. Daitch and D. G. Green, Vision Res. 9, 947 (1969).

O. Bryngdahl, Vision Res. 6, 553 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.