Abstract

We have assembled a single-transverse-mode, single-longitudinal-mode ruby laser with a pulse length of ~6–12 ns (intensity half-height full width). Pulsed holograms have been made by use of this laser. The laser carrier-frequency shift (or chirp) has been measured and is found to be the limiting factor on the depth of field of the hologram. In order to demonstrate this, we present a quantitative measurement of hologram quality.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, Phys. Letters 26A, 357 (1968).
  2. D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].
  3. L. D. Siebert, Appl. Phys. Letters 16, 318 (1970); Appl. Opt.10, 632 (1971). The latter reference, which came to our attention when this paper was in press, deals with a similar topic, but uses a different experimental approach and a longer laser pulse.
    [Crossref]
  4. Max Born and Emil Wolf, Principles of Optics(Pergamon, London, 1959), p. 498.

1970 (1)

L. D. Siebert, Appl. Phys. Letters 16, 318 (1970); Appl. Opt.10, 632 (1971). The latter reference, which came to our attention when this paper was in press, deals with a similar topic, but uses a different experimental approach and a longer laser pulse.
[Crossref]

1969 (1)

D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].

1968 (1)

D. Pohl, Phys. Letters 26A, 357 (1968).

Born, Max

Max Born and Emil Wolf, Principles of Optics(Pergamon, London, 1959), p. 498.

Denisyuk, Yu. N.

D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].

Pohl, D.

D. Pohl, Phys. Letters 26A, 357 (1968).

Siebert, L. D.

L. D. Siebert, Appl. Phys. Letters 16, 318 (1970); Appl. Opt.10, 632 (1971). The latter reference, which came to our attention when this paper was in press, deals with a similar topic, but uses a different experimental approach and a longer laser pulse.
[Crossref]

Smirnov, A. G.

D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].

Staselko, D. I.

D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].

Wolf, Emil

Max Born and Emil Wolf, Principles of Optics(Pergamon, London, 1959), p. 498.

Appl. Phys. Letters (1)

L. D. Siebert, Appl. Phys. Letters 16, 318 (1970); Appl. Opt.10, 632 (1971). The latter reference, which came to our attention when this paper was in press, deals with a similar topic, but uses a different experimental approach and a longer laser pulse.
[Crossref]

Opt. Spektrosk. (1)

D. I. Staselko, Yu. N. Denisyuk, and A. G. Smirnov, Opt. Spektrosk. 26, 413 (1969) [Opt. Spectrosc. 26, 225 (1969)].

Phys. Letters (1)

D. Pohl, Phys. Letters 26A, 357 (1968).

Other (1)

Max Born and Emil Wolf, Principles of Optics(Pergamon, London, 1959), p. 498.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental arrangement. S, single-mode pulsed ruby laser; C, collimator; BS, beam splitter; M, mirror; H, hologram plate; D, photodetector.

Fig. 2
Fig. 2

Relative irradiance of light diffracted into first order by the hologram, as a function of path-length difference during exposure (normalized to 100 for zero path-length difference). The solid dots are experimental values for 6-ns pulses, and the open dots are experimental values for 12-ns pulses. The curves are the corresponding values computed from Eq. (4), the solid curves for 6-ns pulses, the broken curves for 12-ns pulses. The upper pair of curves are for zero-frequency drift; the lower pair contain the measured chirp rates.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) e - t 2 / 4 T 2 cos ( ω 0 t + 1 2 δ t 2 ) ,
I ± ( t ) = 1 4 { exp [ - ( t + S 2 ) 2 / 2 T 2 ] + exp [ - ( t - S 2 ) 2 / 2 T 2 ] ± 2 cos ( ω 0 S + δ S t ) × exp [ - ( t 2 + S 2 4 ) / 2 T 2 ] } ,
I ± = - d t I ± ( t ) = ( π 2 ) 1 2 T [ 1 ± exp ( - S 2 / 8 T 2 - δ 2 S 2 T 2 / 2 ) ] .
R I + - I - I + + I - = exp ( - S 2 / 8 T 2 ) exp ( - δ 2 S 2 T 2 / 2 ) .