Abstract

By the use of two-color threshold technique, the critical duration was measured at 10 retinal-illuminance levels of the adapting field. The critical duration does not always decrease monotonically with increase of the adapting retinal illuminance; it sometimes decreases at first and then increases again before it finally decreases. All these results can be explained very clearly by the hypothesis that the critical duration is determined by the state of adaptation of the cone system concerned. If it is well adapted, the critical duration is short, in general. The experimentally obtained critical-duration-vs-adapting-illuminance curve is composed of component tcE curves of the underlying cone systems, the π1, π2, π4, and π5 mechanisms. The differences among these mechanisms, as to their critical-duration characteristics; were found; the first two, or blue systems, had long critical durations and less decrease with adaptation but the last two had short critical durations and considerable decrease with adaptation.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).
  2. M. Keller, J. Exptl. Psychol. 28, 407 (1941).
    [CrossRef]
  3. R. M. Herrick, J. Comp. Physiol. Psychol. 49, 437 (1956).
    [CrossRef] [PubMed]
  4. W. R. Biersdorf, J. Opt. Soc. Am. 45, 920 (1955).
    [CrossRef] [PubMed]
  5. See, for example, W. S. Stiles, Coloq. Prob. Opt. Vision, Union Intern. Phys. Pure Appl., Madrid, 65 (1953).
  6. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967), p. 574.
  7. W. S. Stiles, Docum. Ophthalmol. 3, 138 (1949).
    [CrossRef]
  8. M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 52, 697 (1962).
    [CrossRef]
  9. W. S. Stiles, Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).
    [CrossRef]
  10. R. O. Rouse, J. Opt. Soc. Am. 42, 626 (1952).
    [CrossRef] [PubMed]
  11. G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).
  12. G. S. Brindley, J. Physiol. (London) 124, 400 (1954).
  13. V. D. Glezer, Vision Res. 5, 497 (1965).
    [CrossRef] [PubMed]
  14. H. G. Sperling and C. L. Jolliffe, J. Opt. Soc. Am. 55, 191 (1965).
    [CrossRef]

1966 (1)

G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).

1965 (2)

1962 (1)

1959 (1)

W. S. Stiles, Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).
[CrossRef]

1956 (1)

R. M. Herrick, J. Comp. Physiol. Psychol. 49, 437 (1956).
[CrossRef] [PubMed]

1955 (1)

1954 (1)

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

1952 (1)

1949 (1)

W. S. Stiles, Docum. Ophthalmol. 3, 138 (1949).
[CrossRef]

1941 (1)

M. Keller, J. Exptl. Psychol. 28, 407 (1941).
[CrossRef]

1938 (1)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

Biersdorf, W. R.

Boynton, R. M.

Brindley, G. S.

G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

Croz, J. J. Du.

G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).

Glezer, V. D.

V. D. Glezer, Vision Res. 5, 497 (1965).
[CrossRef] [PubMed]

Graham, C. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

Herrick, R. M.

R. M. Herrick, J. Comp. Physiol. Psychol. 49, 437 (1956).
[CrossRef] [PubMed]

Ikeda, M.

Jolliffe, C. L.

Keller, M.

M. Keller, J. Exptl. Psychol. 28, 407 (1941).
[CrossRef]

Kemp, E. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

Rouse, R. O.

Rushton, W. A. H.

G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).

Sperling, H. G.

Stiles, W. S.

W. S. Stiles, Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).
[CrossRef]

W. S. Stiles, Docum. Ophthalmol. 3, 138 (1949).
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967), p. 574.

See, for example, W. S. Stiles, Coloq. Prob. Opt. Vision, Union Intern. Phys. Pure Appl., Madrid, 65 (1953).

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967), p. 574.

Docum. Ophthalmol. (1)

W. S. Stiles, Docum. Ophthalmol. 3, 138 (1949).
[CrossRef]

J. Comp. Physiol. Psychol. (1)

R. M. Herrick, J. Comp. Physiol. Psychol. 49, 437 (1956).
[CrossRef] [PubMed]

J. Exptl. Psychol. (1)

M. Keller, J. Exptl. Psychol. 28, 407 (1941).
[CrossRef]

J. Gen. Physiol. (1)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1938).

J. Opt. Soc. Am. (4)

J. Physiol. (London) (2)

G. S. Brindley, J. J. Du. Croz, and W. A. H. Rushton, J. Physiol. (London) 183, 497 (1966).

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

Proc. Natl. Acad. Sci. (U. S.) (1)

W. S. Stiles, Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).
[CrossRef]

Vision Res. (1)

V. D. Glezer, Vision Res. 5, 497 (1965).
[CrossRef] [PubMed]

Other (2)

See, for example, W. S. Stiles, Coloq. Prob. Opt. Vision, Union Intern. Phys. Pure Appl., Madrid, 65 (1953).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967), p. 574.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

F. 1
F. 1

Schematic figure showing the method of the measurement of critical duration tc. Filled circles represent thresholds for 10- and 400-ms stimuli. tc is defined by the duration for which a horizontal line through the threshold for 400 ms and a line with a slope of −1 through the threshold for 10 ms intersect.

F. 2
F. 2

Results from the condition, λ = 481 nm and μ = 561 nm. Upper: TVR. curves with test duration of 400 ms (open circles) and 10 ms (filled circles). Horizontal and vertical lines represent the standard deviation of the possible locations of TVR curves. Lower: critical duration tc.

F. 3
F. 3

Schematic figure to explain tc values near the intersection of π4 and π1 TVR curves, (a) TVR curves, (b) critical duration, (c) threshold-vs-duration curves.

F. 4
F. 4

Same as Fig. 2, except for λ = 503 nm and μ = 561 nm.

F. 5
F. 5

Same as Fig. 2, except for λ = 638 nm and μ = 561 nm.

F. 6
F. 6

Same as Fig. 2, except for λ = 442 nm and μ = 602 nm.

F. 7
F. 7

Same as Fig. 2, except for λ = 442 nm and μ = 503 nm.

F. 8
F. 8

Critical duration plotted as a function of log(x). π1(●), π2 (■), π4(○), and π6(□).

F. 9
F. 9

Critical duration plotted as a function of − logζ(x). Mechanism symbols are the same as in Fig. 8.

Tables (3)

Tables Icon

Table I Calculated values (mean) of m, k1, and k2 of Eq. (3) and their standard deviations (S.D.) for two groups of π1 and π2, and π4 and π5.

Tables Icon

Table II Correlation coefficients r of two straight lines for the decreasing portions in Fig. 9, and the percent of the confidence Pr that assures the correlation to exist, n: sample size.

Tables Icon

Table III t test for significant difference of the critical durations between two groups of π1 and π2, and π4 and π5 in the region of −logζ (x) smaller than 0.40. n: sample size, t0: t value, Pr: the percent of the confidence which assures the significant difference to exist. μπ12μπ45 95% confidence limits.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

log Δ E 10 log Δ E 400 ,
log t c = 1 + ( log Δ E 10 log Δ E 400 ) .
log t c = m [ log ζ ( x ) ] + k 1 if 0 log ζ ( x ) ( k 1 k 2 ) / m , log t c = k 2 if log ζ ( x ) > ( k 1 k 2 ) / m .