Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), p. 485.
  2. A. T. Moffat, Trans. IEEE AP-16, 172 (1968).

1968 (1)

A. T. Moffat, Trans. IEEE AP-16, 172 (1968).

Born, M.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), p. 485.

Moffat, A. T.

A. T. Moffat, Trans. IEEE AP-16, 172 (1968).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), p. 485.

Trans. IEEE (1)

A. T. Moffat, Trans. IEEE AP-16, 172 (1968).

Other (1)

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965), p. 485.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

Square arrays obtained with an algorithm.

F. 2
F. 2

Hexagonal arrays obtained with an algorithm.

F. 3
F. 3

Threefold symmetric arrays with autocorrelations of maximum compactness or maximum core numbers.

Tables (3)

Tables Icon

Table I Moments of inertia and factors of compactness of various square autocorrelative arrays.

Tables Icon

Table II Moments of intertia and factors of compactness for various hexagonal autocorrelative arrays.

Tables Icon

Table III Factors of compactness, core numbers, and core factors of arrays with maximum factors of compactness and maximum core factors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = I min / I a .
C = N c / [ m ( m 1 ) ] .