Abstract

The difference between the effective indexes of refraction at oblique incidence for s and p waves is used to find layer combinations that attenuate s components and pass p components. Matching is found for p components to provide high transmittance. The match is independent of the number of repetitions of the components intermediate-layer combinations. Transmittance of the stack is determined theoretically and experimentally to show that such a layer can be used as a polarizer.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Pohlack, in Jenaer Jahrbuch (VEB Carl Zeiss, Jena, 1952), p. 103.
  2. P. Baumeister, Opt. Acta 6, 105 (1959).
  3. J. Vera, Opt. Acta 11, 315 (1964).
    [CrossRef]
  4. L. Catalán, J. Opt. Soc. Am. 55, 857 (1965).
    [CrossRef]
  5. H. Schröder, Optik 3, 499 (1948).
  6. F. Abelès, J. Phys. Radium 11, 403 (1950).
    [CrossRef]
  7. S. MacNeille, U. S. Patent2403731, July9, 1946.
  8. M. Banning, J. Opt. Soc. Am. 37, 792 (1947).
    [CrossRef] [PubMed]
  9. L. I. Epstein, J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  10. S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1955), pp. 263–269.
  11. L. A. Pipes, in Handbook of Physics, edited by E. U. Condon and H. Odishaw (McGraw–Hill, New York, 1958), pp. 4–40.

1965 (1)

1964 (1)

J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

1959 (1)

P. Baumeister, Opt. Acta 6, 105 (1959).

1952 (1)

1950 (1)

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

1948 (1)

H. Schröder, Optik 3, 499 (1948).

1947 (1)

Abelès, F.

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

Banning, M.

Baumeister, P.

P. Baumeister, Opt. Acta 6, 105 (1959).

Catalán, L.

Epstein, L. I.

MacNeille, S.

S. MacNeille, U. S. Patent2403731, July9, 1946.

Pipes, L. A.

L. A. Pipes, in Handbook of Physics, edited by E. U. Condon and H. Odishaw (McGraw–Hill, New York, 1958), pp. 4–40.

Pohlack, H.

H. Pohlack, in Jenaer Jahrbuch (VEB Carl Zeiss, Jena, 1952), p. 103.

Ramo, S.

S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1955), pp. 263–269.

Schröder, H.

H. Schröder, Optik 3, 499 (1948).

Vera, J.

J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

Whinnery, J. R.

S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1955), pp. 263–269.

J. Opt. Soc. Am. (3)

J. Phys. Radium (1)

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

Opt. Acta (2)

P. Baumeister, Opt. Acta 6, 105 (1959).

J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

Optik (1)

H. Schröder, Optik 3, 499 (1948).

Other (4)

S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1955), pp. 263–269.

L. A. Pipes, in Handbook of Physics, edited by E. U. Condon and H. Odishaw (McGraw–Hill, New York, 1958), pp. 4–40.

S. MacNeille, U. S. Patent2403731, July9, 1946.

H. Pohlack, in Jenaer Jahrbuch (VEB Carl Zeiss, Jena, 1952), p. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Transmittance vs wavelength of a thin-film polarizer designed for 1.06 μm; theoretical – – – –, measured ——.

Tables (2)

Tables Icon

Table I Summary of calculations.

Tables Icon

Table II Coating schedule.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ H m + 1 E m + 1 ] = [ cos δ m j μ m sin θ m ( j / μ m ) sin δ m cos δ m ] [ H m E m ] .
δ = Δ cos θ ,
μ p = n / cos θ ,             μ s = n cos θ ,
[ H m + 1 E m + 1 ] = [ cosh Γ μ sinh Γ ( 1 / μ ) sinh Γ cosh Γ ] [ H m E m ] ,
( cos ( β / 2 ) j μ β sin ( β / 2 ) j sin ( β / 2 ) μ β cos ( β / 2 ) ) ( cos α j μ α sin α j sin α μ α cos α ) ( cos ( β / 2 ) j μ β sin ( β / 2 ) j sin ( β / 2 ) μ β cos ( β / 2 ) ) = ( cos α cos β - 1 2 ( μ α μ β + μ β μ α ) sin α sin β j { μ β cos α sin β + μ α sin α [ cos 2 β 2 - μ β 2 μ α 2 sin 2 β 2 ] } j { cos α sin β μ β + sin α μ α [ cos 2 β 2 - μ α 2 μ β 2 sin 2 β 2 ] } cos α cos β - 1 2 ( μ α μ β + μ β μ α ) sin α sin β ) .
cosh Γ = cos α cos β - 1 2 [ ( μ α / μ β ) + ( μ B / μ α ) ] sin α sin β .