Abstract

Temporal summation and its limits were studied at subjective threshold by varying the pulse duration t of (a) constant-luminance pulse changes of wavelength Δλ, and (b) constant-wavelength pulse changes of luminance ΔL. Threshold depends on Δλ and ΔL for pulse durations longer than about 150–300 and 60 ms, respectively. Psychophysical sensitivity to a pulse of wavelength change improved as pulse duration was increased for short pulses, but was unaffected by pulse duration for long pulses. Although there are departures from full temporal summation for pulse durations longer than roughly 20 ms, a formal analog of Bloch’s law tΔλ = constant gives a fair description of the wavelength-pulse data for short pulses. The critical duration for wavelength pulses (tcw) is much longer than the critical duration for luminance pulses (tcL) at any given mean wavelength. Although tcL does not depend on mean wavelength, tcw is roughly twice as long in the blue-green as in the red. These data bear on the question of what part is played in color vision by the neural encoding of information in the time domain. They can provide fresh empirical tests of current theories of color vision. The findings are tentatively interpreted (a) in terms of different critical events in Walraven’s luminosity and chromaticity channels; these critical events are supposed to limit temporal summation for luminance pulses and wavelength pulses, respectively, and (b) from the viewpoint that central neural processing plays an important part in (task dependent) summation.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The term “luminance-vs-time curve” is used throughout to mean a plot of log t·L vs t where t and L are the duration and amplitude, respectively, of a threshold luminance pulse.
  2. A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).
  3. A. M. Blondel and J. Rey, J. Phys. 1, 530 (1911).
  4. H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
    [Crossref]
  5. C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1937).
    [Crossref]
  6. C. H. Graham and R. Margaria, Am. J. Physiol. 113, 229 (1935).
  7. R. O. Rouse, J. Opt. Soc. Am. 42, 626 (1952).
    [Crossref] [PubMed]
  8. H. G. Sperling and C. L. Jolliffe, J. Opt. Soc. Am. 55, 191 (1965).
    [Crossref]
  9. Y. Galifret and H. Pieron, Année Psychol. 43–44, 231 (1947).
  10. M. M. Connors, J. Opt. Soc. Am. 60, 958 (1970).
    [Crossref] [PubMed]
  11. H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
    [Crossref]
  12. S. Hecht, J. Gen. Physiol. 18, 767 (1935).
  13. W. S. Battersby and H. Schuckman, Vision Res. 10, 263 (1970).
    [Crossref] [PubMed]
  14. W. R. Garner and G. A. Miller, J. Exptl. Psychol. 37, 293 (1947).
    [Crossref]
  15. J. L. Zacks, Science 170, 197 (1970).
    [Crossref] [PubMed]
  16. D. Kahneman and J. J. Norman, J. Exptl. Psychol. 68, 215 (1964).
    [Crossref]
  17. R. M. Boynton, in Sensory Communication, edited by W. A. Rosenblith (M.I.T. Press, Cambridge, Mass., 1961), pp. 739–756.
  18. K. N. Leibovic, in Information Processing in the Nervous System, edited by K. N. Leibovic (Springer, New York, 1969), p. 175.
  19. D. Regan and C. W. Tyler, Vision. Res. 11, 43 (1971).
    [Crossref] [PubMed]
  20. R. A. Smith, Vision Res. 10, 275 (1970).
    [Crossref] [PubMed]
  21. The term “luminance pulse” is used as shorthand for a pulse change of retinal illuminance of a field of a given steady retinal illuminance.
  22. D. Regan and C. W. Tyler, Vision Res. 11, 1720 (1971).
  23. M. H. Siegel, J. Opt. Soc. Am. 55, 566 (1965).
    [Crossref]
  24. P. L. Walraven and M. A. Bouman, Vision Res. 6, 567 (1966)
    [Crossref] [PubMed]

1971 (2)

D. Regan and C. W. Tyler, Vision. Res. 11, 43 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, Vision Res. 11, 1720 (1971).

1970 (4)

R. A. Smith, Vision Res. 10, 275 (1970).
[Crossref] [PubMed]

J. L. Zacks, Science 170, 197 (1970).
[Crossref] [PubMed]

M. M. Connors, J. Opt. Soc. Am. 60, 958 (1970).
[Crossref] [PubMed]

W. S. Battersby and H. Schuckman, Vision Res. 10, 263 (1970).
[Crossref] [PubMed]

1966 (1)

P. L. Walraven and M. A. Bouman, Vision Res. 6, 567 (1966)
[Crossref] [PubMed]

1965 (2)

1964 (1)

D. Kahneman and J. J. Norman, J. Exptl. Psychol. 68, 215 (1964).
[Crossref]

1952 (1)

1947 (2)

Y. Galifret and H. Pieron, Année Psychol. 43–44, 231 (1947).

W. R. Garner and G. A. Miller, J. Exptl. Psychol. 37, 293 (1947).
[Crossref]

1937 (1)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1937).
[Crossref]

1936 (1)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

1935 (2)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 229 (1935).

S. Hecht, J. Gen. Physiol. 18, 767 (1935).

1934 (1)

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

1911 (1)

A. M. Blondel and J. Rey, J. Phys. 1, 530 (1911).

1885 (1)

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

Battersby, W. S.

W. S. Battersby and H. Schuckman, Vision Res. 10, 263 (1970).
[Crossref] [PubMed]

Bloch, A. M.

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

Blondel, A. M.

A. M. Blondel and J. Rey, J. Phys. 1, 530 (1911).

Bouman, M. A.

P. L. Walraven and M. A. Bouman, Vision Res. 6, 567 (1966)
[Crossref] [PubMed]

Boynton, R. M.

R. M. Boynton, in Sensory Communication, edited by W. A. Rosenblith (M.I.T. Press, Cambridge, Mass., 1961), pp. 739–756.

Connors, M. M.

Galifret, Y.

Y. Galifret and H. Pieron, Année Psychol. 43–44, 231 (1947).

Garner, W. R.

W. R. Garner and G. A. Miller, J. Exptl. Psychol. 37, 293 (1947).
[Crossref]

Graham, C. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1937).
[Crossref]

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 229 (1935).

Hartline, H. K.

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

Hecht, S.

S. Hecht, J. Gen. Physiol. 18, 767 (1935).

Jolliffe, C. L.

Kahneman, D.

D. Kahneman and J. J. Norman, J. Exptl. Psychol. 68, 215 (1964).
[Crossref]

Karn, H. W.

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

Kemp, E. H.

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1937).
[Crossref]

Leibovic, K. N.

K. N. Leibovic, in Information Processing in the Nervous System, edited by K. N. Leibovic (Springer, New York, 1969), p. 175.

Margaria, R.

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 229 (1935).

Miller, G. A.

W. R. Garner and G. A. Miller, J. Exptl. Psychol. 37, 293 (1947).
[Crossref]

Norman, J. J.

D. Kahneman and J. J. Norman, J. Exptl. Psychol. 68, 215 (1964).
[Crossref]

Pieron, H.

Y. Galifret and H. Pieron, Année Psychol. 43–44, 231 (1947).

Regan, D.

D. Regan and C. W. Tyler, Vision. Res. 11, 43 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, Vision Res. 11, 1720 (1971).

Rey, J.

A. M. Blondel and J. Rey, J. Phys. 1, 530 (1911).

Rouse, R. O.

Schuckman, H.

W. S. Battersby and H. Schuckman, Vision Res. 10, 263 (1970).
[Crossref] [PubMed]

Siegel, M. H.

Smith, R. A.

R. A. Smith, Vision Res. 10, 275 (1970).
[Crossref] [PubMed]

Sperling, H. G.

Tyler, C. W.

D. Regan and C. W. Tyler, Vision. Res. 11, 43 (1971).
[Crossref] [PubMed]

D. Regan and C. W. Tyler, Vision Res. 11, 1720 (1971).

Walraven, P. L.

P. L. Walraven and M. A. Bouman, Vision Res. 6, 567 (1966)
[Crossref] [PubMed]

Zacks, J. L.

J. L. Zacks, Science 170, 197 (1970).
[Crossref] [PubMed]

Am. J. Physiol. (1)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 229 (1935).

Année Psychol. (1)

Y. Galifret and H. Pieron, Année Psychol. 43–44, 231 (1947).

Compt. Rend. Soc. Biol. (1)

A. M. Bloch, Compt. Rend. Soc. Biol. 2, 493 (1885).

J. Cellular Comp. Physiol. (1)

H. K. Hartline, J. Cellular Comp. Physiol. 5, 229 (1934).
[Crossref]

J. Exptl. Psychol. (2)

W. R. Garner and G. A. Miller, J. Exptl. Psychol. 37, 293 (1947).
[Crossref]

D. Kahneman and J. J. Norman, J. Exptl. Psychol. 68, 215 (1964).
[Crossref]

J. Gen. Physiol. (2)

C. H. Graham and E. H. Kemp, J. Gen. Physiol. 21, 635 (1937).
[Crossref]

S. Hecht, J. Gen. Physiol. 18, 767 (1935).

J. Gen. Psychol. (1)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. (1)

A. M. Blondel and J. Rey, J. Phys. 1, 530 (1911).

Science (1)

J. L. Zacks, Science 170, 197 (1970).
[Crossref] [PubMed]

Vision Res. (4)

R. A. Smith, Vision Res. 10, 275 (1970).
[Crossref] [PubMed]

W. S. Battersby and H. Schuckman, Vision Res. 10, 263 (1970).
[Crossref] [PubMed]

P. L. Walraven and M. A. Bouman, Vision Res. 6, 567 (1966)
[Crossref] [PubMed]

D. Regan and C. W. Tyler, Vision Res. 11, 1720 (1971).

Vision. Res. (1)

D. Regan and C. W. Tyler, Vision. Res. 11, 43 (1971).
[Crossref] [PubMed]

Other (4)

The term “luminance pulse” is used as shorthand for a pulse change of retinal illuminance of a field of a given steady retinal illuminance.

R. M. Boynton, in Sensory Communication, edited by W. A. Rosenblith (M.I.T. Press, Cambridge, Mass., 1961), pp. 739–756.

K. N. Leibovic, in Information Processing in the Nervous System, edited by K. N. Leibovic (Springer, New York, 1969), p. 175.

The term “luminance-vs-time curve” is used throughout to mean a plot of log t·L vs t where t and L are the duration and amplitude, respectively, of a threshold luminance pulse.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calibration of modulator’s response to pulse inputs. A–C—electrical input to modulators. Pulse lengths are 10 (A), 20 (B), and 100 ms (C). D–F—light output of luminance modulator measured with photocell. Pulse lengths are 10 (D), 20 (E), and 100 ms (F). G, H—output of wavelength modulator measured with photocell by method described in text. Pulse lengths 20 (G) and 100 ms (H).

Fig. 2
Fig. 2

Upper part. Luminance-pulse thresholds. Plots of ΔL vs t for threshold pulses (ΔL = luminance excursion in td, and t = pulse duration in ms). Lower part. Wavelength-pulse thresholds. Plots of Δλ vs t for threshold pulses (Δλ = wavelength excursion for a constant-luminance pulse of wavelength change in nm, and t = duration of pulse in ms). For both plots A = 480, B = 527, C = 600, and D = 580 nm. Mean retinal illuminances are 10 td. Field sizes 2°. No surrounds. Note different time scales for upper and lower plots.

Fig. 3
Fig. 3

Wavelength-pulse thresholds replotted from Fig. 2. Plots of log (Δλ·t) vs log t for threshold pulses (Δλ = amplitude of constant-luminance pulse of wavelength change, t = pulse duration). Upper plot—mean retinal illuminance is 10 td; A = 480, B = 527, C = 600, D = 580 nm. Lower plot—mean retinal illuminance is 110 td and mean wavelength is 527 nm.

Fig. 4
Fig. 4

Luminance-pulse thresholds. Plots of log(ΔL·t) vs pulse duration t for threshold pulses (ΔL = amplitude of pulse of retinal illuminance, t = pulse duration). A—480, B—527, C—580, D—600 nm. Mean retinal illuminance = 10 td.

Fig. 5
Fig. 5

Luminance-pulse thresholds. Graphs of log [differential illuminance threshold × time (ΔL·t)/L] plotted as a function of log pulse duration (t). Upper graph, wavelength of stimulus 527 nm. A = 0.1, B = 10, C = 110 td. Lower graph (D), wavelength of stimlus 600 nm; retinal illuminance 0.1 td.