Abstract

White light was temporally modulated and subjects gave magnitude estimations of the apparent depth of modulation. Three stimulus parameters were varied: level of time-average luminance, amplitude of modulation, and frequency of modulation. At the lowest luminances, apparent depth of modulation decreased monotonically as modulation frequency increased toward fusion. At the higher luminances, only large amplitudes of modulation produced monotonic functions relating apparent depth of modulation to frequency; smaller amplitudes of modulation produced nonmonotonic functions with maxima in the region of 5–10 Hz. Derived contours relating modulation amplitude to frequency for constant apparent depth of modulation generally resemble functions relating modulation amplitude to frequency for threshold.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, J. Opt. Soc. Am. 6, 254 (1922).
    [Crossref]
  2. H. deLange, J. Opt. Soc. Am. 44, 380 (1954).
    [Crossref]
  3. D. H. Kelly, J. Opt. Soc. Am. 51, 422 (1961).
    [Crossref] [PubMed]
  4. H. deLange, J. Opt. Soc. Am. 61, 415 (1961).
    [Crossref]
  5. See Ref. 2, pp. 385–386.
  6. L. E. Marks and J. C. Stevens, Percept. Psychophys. 1, 17 (1966).
    [Crossref]
  7. J. C. Stevens and M. Guirao, J. Acoust. Soc. Am. 36, 2210 (1964).
  8. Figures 13–16 follow the tradition of plotting percent modulation decreasing on the ordinate.
  9. F. Veringa, J. Opt. Soc. Am. 48, 500 (1958).
    [Crossref] [PubMed]
  10. The prominent plateaus that appear in Fig. 18 were less evident in Veringa’s linear plot. Similar plateaus appeared in double-logarithmic plots of thresholds obtained by D. H. Kelly, J. Opt. Soc. Am. 52, 89 (1962). These plateaus were stable, though evident in the data for only two of eight subjects. Nevertheless, the occasional occurrence of plateaus, in conjunction with the large variation of sensitivity among subjects, demonstrates the importance of analysis of data for individual subjects.
    [Crossref] [PubMed]
  11. The increase of brightness (above that of uninterrupted light) of a light modulated at low frequencies is sometimes termed “brightness enhancement.” See, for example, G. S. Wasserman, J. Opt. Soc. Am. 56, 242 (1966). This should not be confused with another phenomenon, which Bartley has termed “brightness enhancement.” [For example, see C. W. Schneider and S. H. Bartley, J. Psychol. 63, 53 (1966).] This latter phenomenon refers to the increase of brightness of an intermittent light at higher frequencies, when the brightness of the primary perceptual component is steady.
    [Crossref] [PubMed]
  12. C. Rabelo and O.-J. Grüsser, Psychol. Forsch. 26, 299 (1961).
    [Crossref]
  13. This is the relation that typically obtains between magnitude estimates of brightness and luminance. See J. C. Stevens and S. S. Stevens, J. Opt. Soc. Am. 53, 375 (1963).
    [Crossref] [PubMed]
  14. See J. D. Kazsuk and S. H. Bartley, J. Psychol. 71, 281 (1969).
    [Crossref] [PubMed]
  15. D. Jameson, in Proceedings of the International Colour Meeting: Lucerne, Vol. 1 (Musterschmidt, Göttingen, 1965), p. 128.
  16. C. H. Graham, in Vision and Visual Perception, edited by C. H. Graham (Wiley, New York, 1965), pp. 353–356.
  17. L. E. Marks, Vision Res. 8, 525 (1968).
    [Crossref] [PubMed]
  18. L. E. Marks, Percept. Psychophys. 1, 335 (1966).
  19. H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 5, 82 (1933).
    [Crossref]
  20. A. L. Diamond, J. Opt. Soc. Am. 52, 700 (1962).
    [Crossref]
  21. J. C. Stevens and L. E. Marks, Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1970).
  22. See J. Z. Levinson, Science 160, 21 (1968).
    [Crossref] [PubMed]
  23. How the effects of two or more suprathreshold harmonic components might combine is a question of considerable interest. Some evidence that such effects may not combine in a linear manner has been presented by J. L. Brown, Science 137, 686 (1962).
    [Crossref] [PubMed]

1970 (1)

J. C. Stevens and L. E. Marks, Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1970).

1969 (1)

See J. D. Kazsuk and S. H. Bartley, J. Psychol. 71, 281 (1969).
[Crossref] [PubMed]

1968 (2)

L. E. Marks, Vision Res. 8, 525 (1968).
[Crossref] [PubMed]

See J. Z. Levinson, Science 160, 21 (1968).
[Crossref] [PubMed]

1966 (3)

1964 (1)

J. C. Stevens and M. Guirao, J. Acoust. Soc. Am. 36, 2210 (1964).

1963 (1)

1962 (3)

1961 (3)

1958 (1)

1954 (1)

1933 (1)

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 5, 82 (1933).
[Crossref]

1922 (1)

Bartley, S. H.

See J. D. Kazsuk and S. H. Bartley, J. Psychol. 71, 281 (1969).
[Crossref] [PubMed]

Brown, J. L.

How the effects of two or more suprathreshold harmonic components might combine is a question of considerable interest. Some evidence that such effects may not combine in a linear manner has been presented by J. L. Brown, Science 137, 686 (1962).
[Crossref] [PubMed]

deLange, H.

Diamond, A. L.

Fletcher, H.

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 5, 82 (1933).
[Crossref]

Graham, C. H.

C. H. Graham, in Vision and Visual Perception, edited by C. H. Graham (Wiley, New York, 1965), pp. 353–356.

Grüsser, O.-J.

C. Rabelo and O.-J. Grüsser, Psychol. Forsch. 26, 299 (1961).
[Crossref]

Guirao, M.

J. C. Stevens and M. Guirao, J. Acoust. Soc. Am. 36, 2210 (1964).

Ives, H. E.

Jameson, D.

D. Jameson, in Proceedings of the International Colour Meeting: Lucerne, Vol. 1 (Musterschmidt, Göttingen, 1965), p. 128.

Kazsuk, J. D.

See J. D. Kazsuk and S. H. Bartley, J. Psychol. 71, 281 (1969).
[Crossref] [PubMed]

Kelly, D. H.

Levinson, J. Z.

See J. Z. Levinson, Science 160, 21 (1968).
[Crossref] [PubMed]

Marks, L. E.

J. C. Stevens and L. E. Marks, Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1970).

L. E. Marks, Vision Res. 8, 525 (1968).
[Crossref] [PubMed]

L. E. Marks, Percept. Psychophys. 1, 335 (1966).

L. E. Marks and J. C. Stevens, Percept. Psychophys. 1, 17 (1966).
[Crossref]

Munson, W. A.

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 5, 82 (1933).
[Crossref]

Rabelo, C.

C. Rabelo and O.-J. Grüsser, Psychol. Forsch. 26, 299 (1961).
[Crossref]

Stevens, J. C.

J. C. Stevens and L. E. Marks, Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1970).

L. E. Marks and J. C. Stevens, Percept. Psychophys. 1, 17 (1966).
[Crossref]

J. C. Stevens and M. Guirao, J. Acoust. Soc. Am. 36, 2210 (1964).

This is the relation that typically obtains between magnitude estimates of brightness and luminance. See J. C. Stevens and S. S. Stevens, J. Opt. Soc. Am. 53, 375 (1963).
[Crossref] [PubMed]

Stevens, S. S.

Veringa, F.

Wasserman, G. S.

J. Acoust. Soc. Am. (2)

J. C. Stevens and M. Guirao, J. Acoust. Soc. Am. 36, 2210 (1964).

H. Fletcher and W. A. Munson, J. Acoust. Soc. Am. 5, 82 (1933).
[Crossref]

J. Opt. Soc. Am. (9)

A. L. Diamond, J. Opt. Soc. Am. 52, 700 (1962).
[Crossref]

This is the relation that typically obtains between magnitude estimates of brightness and luminance. See J. C. Stevens and S. S. Stevens, J. Opt. Soc. Am. 53, 375 (1963).
[Crossref] [PubMed]

H. E. Ives, J. Opt. Soc. Am. 6, 254 (1922).
[Crossref]

H. deLange, J. Opt. Soc. Am. 44, 380 (1954).
[Crossref]

D. H. Kelly, J. Opt. Soc. Am. 51, 422 (1961).
[Crossref] [PubMed]

H. deLange, J. Opt. Soc. Am. 61, 415 (1961).
[Crossref]

F. Veringa, J. Opt. Soc. Am. 48, 500 (1958).
[Crossref] [PubMed]

The prominent plateaus that appear in Fig. 18 were less evident in Veringa’s linear plot. Similar plateaus appeared in double-logarithmic plots of thresholds obtained by D. H. Kelly, J. Opt. Soc. Am. 52, 89 (1962). These plateaus were stable, though evident in the data for only two of eight subjects. Nevertheless, the occasional occurrence of plateaus, in conjunction with the large variation of sensitivity among subjects, demonstrates the importance of analysis of data for individual subjects.
[Crossref] [PubMed]

The increase of brightness (above that of uninterrupted light) of a light modulated at low frequencies is sometimes termed “brightness enhancement.” See, for example, G. S. Wasserman, J. Opt. Soc. Am. 56, 242 (1966). This should not be confused with another phenomenon, which Bartley has termed “brightness enhancement.” [For example, see C. W. Schneider and S. H. Bartley, J. Psychol. 63, 53 (1966).] This latter phenomenon refers to the increase of brightness of an intermittent light at higher frequencies, when the brightness of the primary perceptual component is steady.
[Crossref] [PubMed]

J. Psychol. (1)

See J. D. Kazsuk and S. H. Bartley, J. Psychol. 71, 281 (1969).
[Crossref] [PubMed]

Percept. Psychophys. (2)

L. E. Marks and J. C. Stevens, Percept. Psychophys. 1, 17 (1966).
[Crossref]

L. E. Marks, Percept. Psychophys. 1, 335 (1966).

Psychol. Forsch. (1)

C. Rabelo and O.-J. Grüsser, Psychol. Forsch. 26, 299 (1961).
[Crossref]

Science (2)

See J. Z. Levinson, Science 160, 21 (1968).
[Crossref] [PubMed]

How the effects of two or more suprathreshold harmonic components might combine is a question of considerable interest. Some evidence that such effects may not combine in a linear manner has been presented by J. L. Brown, Science 137, 686 (1962).
[Crossref] [PubMed]

Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1)

J. C. Stevens and L. E. Marks, Trans. Am. Soc. Heat., Refrig., Aircond. Eng. 76, Pt. I (1970).

Vision Res. (1)

L. E. Marks, Vision Res. 8, 525 (1968).
[Crossref] [PubMed]

Other (4)

Figures 13–16 follow the tradition of plotting percent modulation decreasing on the ordinate.

D. Jameson, in Proceedings of the International Colour Meeting: Lucerne, Vol. 1 (Musterschmidt, Göttingen, 1965), p. 128.

C. H. Graham, in Vision and Visual Perception, edited by C. H. Graham (Wiley, New York, 1965), pp. 353–356.

See Ref. 2, pp. 385–386.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Diagram of the apparatus: S1 and S2, light sources; L, lens; B, beam splitter; M, mirror; A, aperture; F, filters; SD, sectored disk; D, diffuser; AP, artificial pupil.

Fig. 2
Fig. 2

Apparent depth of modulation as a function of frequency (subject RO) at 300 cd/m2. The parameter is the percent modulation of the fundamental Fourier component of the square-wave modulation. The left-hand section gives results for decreasing frequency, the right-hand section for increasing frequency.

Fig. 3
Fig. 3

Same as Fig. 2, at 30 cd/m2.

Fig. 4
Fig. 4

Same as Fig. 2, at 3 cd/m2.

Fig. 5
Fig. 5

Apparent depth of modulation as a function of frequency (subject LEM) at 300 cd/m2. The parameter is the percent modulation of the fundamental Fourier component of the square-wave modulation. The left-hand section gives results for decreasing frequency, the right-hand section for increasing frequency.

Fig. 6
Fig. 6

Same as Fig. 5, at 30 cd/m2.

Fig. 7
Fig. 7

Same as Fig. 5, at 3 cd/m2.

Fig. 8
Fig. 8

Apparent depth of modulation as a function of frequency (subject GGB) at 180 cd/m2. The parameter is the percent modulation of the fundamental Fourier component of the square-wave modulation. The left-hand section gives results for decreasing frequency, the right-hand section for increasing frequency.

Fig. 9
Fig. 9

Same as Fig. 8, at 18 cd/m2.

Fig. 10
Fig. 10

Same as Fig. 8, at 1.8 cd/m2.

Fig. 11
Fig. 11

Apparent depth of modulation as a function of frequency (subject GGB) at 100 cd/m2. The parameter is the percent modulation of the fundamental Fourier component of the trapezoidal modulation. The left-hand section gives results for decreasing frequency, the right-hand section for increasing frequency.

Fig. 12
Fig. 12

Same as Fig. 11, at 10 cd/m2.

Fig. 13
Fig. 13

Contours of constant apparent depth of square-wave modulation for subject RO. The contours were derived from the functions in Figs. 24. The parameter is apparent depth of modulation.

Fig. 14
Fig. 14

Same as Fig. 13, for subject LEM, derived from Figs. 57.

Fig. 15
Fig. 15

Same as Fig. 13, for subject GGB, derived from Figs. 810.

Fig. 16
Fig. 16

Contours of constant apparent depth of trapezoidal modulation for subject GGB. The contours were derived from the functions in Figs. 11 and 12. The parameter is apparent depth of modulation.

Fig. 17
Fig. 17

Contours of constant apparent depth of modulation (data from Veringa9).

Fig. 18
Fig. 18

Brightness of intermittent light minus brightness of Talbot level as a function of frequency (data from Rabelo and Grüsser12). Luminance of the intermittent light (cd/m2) is the parameter.