Abstract

This study investigated the effect of exposure duration on the luminances required to reach absolute, detection, chromatic, and correct-hue thresholds. Dominant wavelengths 642, 584, 521, and 468 nm were investigated by the method of constant stimuli, with 64.5- and 2.5-min-diam stimulus sizes, for a series of nine exposure durations ranging from 5 to 1413 msec. The results show that, for the small stimulus at brief durations, the luminance–exposure-time relationship approaches Bloch’s law for the absolute-, detection-, and chromatic-threshold functions. For the corresponding correct-hue function, and for all thresholds, brief durations, large stimulus, the slope of the function relating luminance to exposure duration is less than that predicted by Bloch’s law. The slopes relating luminance to exposure duration for the long exposures are greater for the small than for the large stimuli. There is a tendency for the two longer wavelengths to be seen at lower luminances than the two shorter wavelengths, for all thresholds and exposures. The extent of the differences among wavelengths changes as a function of the kind of threshold; the greatest difference occurs for the correct-hue threshold. Photochromatic intervals α and β are smallest for the 642-nm stimulus, over the range of durations. At this wavelength, the four thresholds can be described by a single function relating luminance and exposure duration. The largest photochromatic intervals α and β are found for the 521-nm stimulus. The results are discussed in terms of the relative action time among hues and the threshold-tritanopia hypothesis.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Hillman, J. Opt. Soc. Am. 48, 422 (1958).
    [Crossref]
  2. H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
    [Crossref]
  3. G. S. Brindley, J. Physiol. (London) 118, 135 (1952); J. S. Kinney and M. M. Connors, Am. J. Psychol. 78, 432 (1965).
    [Crossref] [PubMed]
  4. R. O. Rouse, J. Opt. Soc. Am. 42, 626 (1952).
    [Crossref] [PubMed]
  5. H. G. Sperling and C. L. Jolliffe, J. Opt. Soc. Am. 55, 191 (1965).
    [Crossref]
  6. G. S. Brindley, J. Physiol. (London) 124, 400 (1954).
  7. H. Pieron, Ann. Psychol. 23, 1 (1922); Ann. Psychol. 32, 1 (1931).
    [Crossref]
  8. M. A. Lennox and A. Madsen, J. Neurophysiol. 15, 412 (1955); M. A. Lennox, J. Neurophysiol. 19, 271 (1956).
    [PubMed]
  9. K. O. Donner, Acta Physiol. Scand. 21, Suppl. 72, 1 (1950).
    [Crossref]
  10. K. Motokawa, J. Neurophysiol. 12, 291 (1949).
    [PubMed]
  11. C. E. Ferree and G. Rand, Illum. Eng. 18, 151 (1923).
  12. J. S. Kinney, J. Opt. Soc. Am. 55, 731 (1965).
    [Crossref]
  13. S. Hecht and S. Shlaer, J. Gen. Physiol. 19, 965 (1936).
  14. S. M. Luria, Am. J. Psychol. 80, 14 (1967).
    [Crossref] [PubMed]
  15. D. O. Weitzman and J. S. Kinney, J. Opt. Soc. Am. 57, 665 (1967).
    [Crossref] [PubMed]
  16. P. K. Kaiser, J. Opt. Soc. Am. 58, 849 (1968).
    [Crossref] [PubMed]
  17. M. M. Connors, J. Opt. Soc. Am. 58, 258 (1968).
    [Crossref] [PubMed]
  18. M. M. Connors, J. Opt. Soc. Am. 59, 91 (1969).
    [Crossref]
  19. By detection threshold is meant the luminance necessary to perceive the appropriate hue 50% of the time, when the observer had prior knowledge of the hue he was attempting to detect. For the absolute, chromatic, and correct-hue thresholds, the observer did not know the hue of the stimulus being presented. Chromatic threshold is the luminance value at which any hue, or any combination of hues, is reported 50% of the time. The correct-hue threshold represents the point at which the hue normally associated with the wavelength when it is seen at higher intensities is reported 50% of the time. For a more complete description of these thresholds, see Ref. 17 and footnotes 14 and 15 of Ref. 18.
  20. R. M. Boynton and J. Gordon, J. Opt. Soc. Am. 55, 78 (1965); D. O. Weitzman and J. S. Kinney, Ref. 15.
    [Crossref]
  21. C. H. Graham and Yun Hsia, J. Opt. Soc. Am. 59, 993 (1969).
    [Crossref] [PubMed]
  22. D. Farnsworth, Farbe 4, 185 (1955).

1969 (2)

1968 (2)

1967 (2)

1965 (3)

1958 (1)

1955 (2)

M. A. Lennox and A. Madsen, J. Neurophysiol. 15, 412 (1955); M. A. Lennox, J. Neurophysiol. 19, 271 (1956).
[PubMed]

D. Farnsworth, Farbe 4, 185 (1955).

1954 (1)

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

1952 (2)

G. S. Brindley, J. Physiol. (London) 118, 135 (1952); J. S. Kinney and M. M. Connors, Am. J. Psychol. 78, 432 (1965).
[Crossref] [PubMed]

R. O. Rouse, J. Opt. Soc. Am. 42, 626 (1952).
[Crossref] [PubMed]

1950 (1)

K. O. Donner, Acta Physiol. Scand. 21, Suppl. 72, 1 (1950).
[Crossref]

1949 (1)

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

1936 (2)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

S. Hecht and S. Shlaer, J. Gen. Physiol. 19, 965 (1936).

1923 (1)

C. E. Ferree and G. Rand, Illum. Eng. 18, 151 (1923).

1922 (1)

H. Pieron, Ann. Psychol. 23, 1 (1922); Ann. Psychol. 32, 1 (1931).
[Crossref]

Boynton, R. M.

Brindley, G. S.

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

G. S. Brindley, J. Physiol. (London) 118, 135 (1952); J. S. Kinney and M. M. Connors, Am. J. Psychol. 78, 432 (1965).
[Crossref] [PubMed]

Connors, M. M.

Donner, K. O.

K. O. Donner, Acta Physiol. Scand. 21, Suppl. 72, 1 (1950).
[Crossref]

Farnsworth, D.

D. Farnsworth, Farbe 4, 185 (1955).

Ferree, C. E.

C. E. Ferree and G. Rand, Illum. Eng. 18, 151 (1923).

Gordon, J.

Graham, C. H.

Hecht, S.

S. Hecht and S. Shlaer, J. Gen. Physiol. 19, 965 (1936).

Hillman, B. M.

Hsia, Yun

Jolliffe, C. L.

Kaiser, P. K.

Karn, H. W.

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

Kinney, J. S.

Lennox, M. A.

M. A. Lennox and A. Madsen, J. Neurophysiol. 15, 412 (1955); M. A. Lennox, J. Neurophysiol. 19, 271 (1956).
[PubMed]

Luria, S. M.

S. M. Luria, Am. J. Psychol. 80, 14 (1967).
[Crossref] [PubMed]

Madsen, A.

M. A. Lennox and A. Madsen, J. Neurophysiol. 15, 412 (1955); M. A. Lennox, J. Neurophysiol. 19, 271 (1956).
[PubMed]

Motokawa, K.

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

Pieron, H.

H. Pieron, Ann. Psychol. 23, 1 (1922); Ann. Psychol. 32, 1 (1931).
[Crossref]

Rand, G.

C. E. Ferree and G. Rand, Illum. Eng. 18, 151 (1923).

Rouse, R. O.

Shlaer, S.

S. Hecht and S. Shlaer, J. Gen. Physiol. 19, 965 (1936).

Sperling, H. G.

Weitzman, D. O.

Acta Physiol. Scand. (1)

K. O. Donner, Acta Physiol. Scand. 21, Suppl. 72, 1 (1950).
[Crossref]

Am. J. Psychol. (1)

S. M. Luria, Am. J. Psychol. 80, 14 (1967).
[Crossref] [PubMed]

Ann. Psychol. (1)

H. Pieron, Ann. Psychol. 23, 1 (1922); Ann. Psychol. 32, 1 (1931).
[Crossref]

Farbe (1)

D. Farnsworth, Farbe 4, 185 (1955).

Illum. Eng. (1)

C. E. Ferree and G. Rand, Illum. Eng. 18, 151 (1923).

J. Gen. Physiol. (1)

S. Hecht and S. Shlaer, J. Gen. Physiol. 19, 965 (1936).

J. Gen. Psychol. (1)

H. W. Karn, J. Gen. Psychol. 14, 360 (1936).
[Crossref]

J. Neurophysiol. (2)

M. A. Lennox and A. Madsen, J. Neurophysiol. 15, 412 (1955); M. A. Lennox, J. Neurophysiol. 19, 271 (1956).
[PubMed]

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

J. Opt. Soc. Am. (10)

J. Physiol. (London) (2)

G. S. Brindley, J. Physiol. (London) 124, 400 (1954).

G. S. Brindley, J. Physiol. (London) 118, 135 (1952); J. S. Kinney and M. M. Connors, Am. J. Psychol. 78, 432 (1965).
[Crossref] [PubMed]

Other (1)

By detection threshold is meant the luminance necessary to perceive the appropriate hue 50% of the time, when the observer had prior knowledge of the hue he was attempting to detect. For the absolute, chromatic, and correct-hue thresholds, the observer did not know the hue of the stimulus being presented. Chromatic threshold is the luminance value at which any hue, or any combination of hues, is reported 50% of the time. The correct-hue threshold represents the point at which the hue normally associated with the wavelength when it is seen at higher intensities is reported 50% of the time. For a more complete description of these thresholds, see Ref. 17 and footnotes 14 and 15 of Ref. 18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Percent seen as a function of stimulus luminance for detection (◇—·—·—◇), absolute (□— —□), chromatic (○ ⋯⋯ ○), and correct-hue (△– – – –△) judgments. Data are for observer JD, 642-nm-dominant λ, 22-msec exposure, 2.5-min-diam stimulus.

Fig. 2
Fig. 2

Luminances required for absolute threshold as a function of exposure duration for 642-(◇—·—·—◇), 584-(□— —□), 521-(○ ⋯⋯ ○), and 468-(△– – – –△) nm stimuli, solid line (——) describes the data of more than one dominant wavelength; top left, observer DB; top right, observer MC; bottom left, observer JD; bottom right, average of three observers. Upper curves within each graph are for small-stimulus data; lower curves, large-stimulus data.

Fig. 3
Fig. 3

Luminances required for detection threshold as a function of exposure duration for the 642-(◇—·—·—◇), 584-(□— —□), 521-(○ ⋯⋯ ○), and 468-(△– – – –△) nm stimuli, solid line (——) describes the data of more than one dominant wavelength; top left, observer DB; top right, observer MC; bottom left, observer JD; bottom right, average of three observers. Upper curves within each graph are for small-stimulus data; lower curves, large-stimulus data.

Fig. 4
Fig. 4

Luminances required for chromatic threshold as a function of exposure duration for the 642-(◇—·—·—◇), 584-(□— —□), 521-(○ ⋯⋯ ○), and 468-(△– – – –△) nm stimuli, solid line (——) describes the data of more than one dominant wavelength; top left, observer DB; top right, observer MC; bottom left, observer JD; bottom right, average of three observers. Upper curves within each graph are for small-stimulus data; lower curves, large-stimulus data.

Fig. 5
Fig. 5

Luminances required for correct-hue threshold as a function of exposure duration for the 642-(◇—·—·—◇), 584-(□— —□), 521-(○ ⋯⋯ ○), and 468-(△– – – –△) nm stimuli, solid line (——) describes the data of more than one dominant wavelength; top left, observer DB; top right, observer MC; bottom left, observer JD; bottom right, average of three observers. Upper curves within each graph are for small-stimulus data; lower curves, large-stimulus data.

Fig. 6
Fig. 6

Comparison of kinds of thresholds, averaged over observers. Luminances to reach detection (◇—·—·—◇), absolute (□— —□), chromatic (○ ⋯⋯ ○), and correct-hue (△– – – –△) thresholds as a function of exposure duration, solid line (——) describes the data of more than one kind of threshold; upper left, 468-; upper right, 521-; lower left, 584-; lower right, 642-nm-dominant λ stimulus. Upper curves within each graph are for small-stimulus data; lower curves, large-stimulus data.

Fig. 7
Fig. 7

Photochromatic intervals α and β. Absolute threshold is represented as zero on the ordinate scale. (▲——▲) indicates photochromatic interval α, the difference between the absolute and the chromatic threshold; (△——△) indicates photochromatic interval β, the difference between the absolute and the correct-hue threshold. Data are for the 468-(B), 521-(G), 584-(Y), and 642-(R) nm-dominant λ stimuli. From left to right the graphs reflect the data for the 5-, 11-, 22-, 44-, 87-, 174-, 347-, 700-, and 1413-msec exposures; top, large stimulus; bottom, small stimulus.

Tables (3)

Tables Icon

Table I Description of the filters.

Tables Icon

Table II Exponents (x) in I · tx = C, and durations at which descriptive functions intersect for data averaged over observers.

Tables Icon

Table III Designations of specific hue confusions as a percent of total presentations.