Abstract

Two He—Ne lasers operating at 6328 Å have been utilized to make simultaneous measurements of the effects of scintillation over homogeneous optical paths of 650 and 1300 m to study the transfer of laser radiation through a turbulent medium. At the path terminus, multiple sampling of each laser beam was effected by use of a photo-optical technique that records a 61-cm cross section of an optical beam. Concurrent with the optical data, wind-speed and direction recordings were made at multiple points along the optical path in order to estimate the homogeneity of meteorological conditions. Near the path terminus, measurements of wind shear and temperature lapse were taken. In addition, high-speed-thermometry techniques were utilized to compute one-dimensional temperature spectra as well as the thermal structure coefficient <i>C<sub>T</sub></i>. Data were gathered during temperature-lapse, neutral, and inversion conditions. Log-irradiance scans derived from the optical data were used to compute log-irradiance power spectra, variance, and other statistical quantities. From these optical and meteorological data, optical-filter functions were calculated for spatial frequencies above 87 cycles/m and are usedfor comparison with current theories. The saturation of the log-irradiance data is again observed, and the isotropy of the irradiance fluctuations is examined.

PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Strohbehn, Proc. IEEE 56, 1301 (1968).
  2. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw—Hill, New York, 1960).
  3. A. Ishimaru, Radio Sci. 4 (New Series), 295 (1969).
  4. F. P. Carlson, J. Opt. Soc. Am. 59, 1343 (1969).
  5. V. I. Tatarski and A. I. Kon, Izv. Vuzov, Radiofizika 8, 870 (1965). Here the authors consider only the perturbation in the phase structure function and, hence, the angle-of-arrival fluctuations. However, the beam profile is formulated in terms of a gaussian amplitude rather than a gaussian irradiance and is therefore not a solution for the TEM00 mode beam.
  6. M. E. Gracheva and A. S. Gurvich, Izv. Vuzov, Radiofizika 8, 717 (1965).
  7. P. H. Deitz and N. J. Wright, J. Opt. Soc. Am. 59, 527 (1969).
  8. V. I. Tatarski, Sov. Phys. JETP 22, 1083 (1966).
  9. V. I. Tatarski, Sov. Phys. JETP 19, 946 (1964).
  10. V. I. Tatarski and M. E. Gertsenshtein, Sov. Phys. JETP 17, 458 (1963).
  11. D. A. deWolf, J. Opt. Soc. Am. 58, 461 (1968).
  12. Reference 2, p. 136.
  13. J. M. Caborn, Brit. Forestry Comm. Bull. 29, 1950.
  14. Reference 2, p. 40.
  15. L. R. Tsvang, Izv. ANSSSR, Geophys. Ser. 8, 1252 (1960).
  16. Private correspondence, through contract, with D. J. Portman and co–workers, Dept. of Meteorology and Oceanography, University of Michigan, Ann Arbor, Mich.
  17. P. H. Deitz, in Modern Optics, edited by J. Fox (Polytechnic Press, Brooklyn, N. Y., 1967), pp. 766 ff.
  18. Reference 2, p. 215.
  19. Private communication with M. A. Martin.
  20. Photometrics, Inc., independently scanned the films and determined the power spectra of the identical exposures. Their results are in direct agreement with those reported here.
  21. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Caborn, J. M.

J. M. Caborn, Brit. Forestry Comm. Bull. 29, 1950.

Carlson, F. P.

F. P. Carlson, J. Opt. Soc. Am. 59, 1343 (1969).

Deitz, P. H.

P. H. Deitz and N. J. Wright, J. Opt. Soc. Am. 59, 527 (1969).

P. H. Deitz, in Modern Optics, edited by J. Fox (Polytechnic Press, Brooklyn, N. Y., 1967), pp. 766 ff.

deWolf, D. A.

D. A. deWolf, J. Opt. Soc. Am. 58, 461 (1968).

Erdelyi, A.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Gertsenshtein, M. E.

V. I. Tatarski and M. E. Gertsenshtein, Sov. Phys. JETP 17, 458 (1963).

Gracheva, M. E.

M. E. Gracheva and A. S. Gurvich, Izv. Vuzov, Radiofizika 8, 717 (1965).

Gurvich, A. S.

M. E. Gracheva and A. S. Gurvich, Izv. Vuzov, Radiofizika 8, 717 (1965).

Ishimaru, A.

A. Ishimaru, Radio Sci. 4 (New Series), 295 (1969).

Kon, A. I.

V. I. Tatarski and A. I. Kon, Izv. Vuzov, Radiofizika 8, 870 (1965). Here the authors consider only the perturbation in the phase structure function and, hence, the angle-of-arrival fluctuations. However, the beam profile is formulated in terms of a gaussian amplitude rather than a gaussian irradiance and is therefore not a solution for the TEM00 mode beam.

Magnus, W.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Oberhettinger, F.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Strohbehn, J. W.

J. W. Strohbehn, Proc. IEEE 56, 1301 (1968).

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw—Hill, New York, 1960).

V. I. Tatarski and A. I. Kon, Izv. Vuzov, Radiofizika 8, 870 (1965). Here the authors consider only the perturbation in the phase structure function and, hence, the angle-of-arrival fluctuations. However, the beam profile is formulated in terms of a gaussian amplitude rather than a gaussian irradiance and is therefore not a solution for the TEM00 mode beam.

V. I. Tatarski, Sov. Phys. JETP 22, 1083 (1966).

V. I. Tatarski, Sov. Phys. JETP 19, 946 (1964).

V. I. Tatarski and M. E. Gertsenshtein, Sov. Phys. JETP 17, 458 (1963).

Tricomi, F. G.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Tsvang, L. R.

L. R. Tsvang, Izv. ANSSSR, Geophys. Ser. 8, 1252 (1960).

Wright, N. J.

P. H. Deitz and N. J. Wright, J. Opt. Soc. Am. 59, 527 (1969).

Other (21)

J. W. Strohbehn, Proc. IEEE 56, 1301 (1968).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw—Hill, New York, 1960).

A. Ishimaru, Radio Sci. 4 (New Series), 295 (1969).

F. P. Carlson, J. Opt. Soc. Am. 59, 1343 (1969).

V. I. Tatarski and A. I. Kon, Izv. Vuzov, Radiofizika 8, 870 (1965). Here the authors consider only the perturbation in the phase structure function and, hence, the angle-of-arrival fluctuations. However, the beam profile is formulated in terms of a gaussian amplitude rather than a gaussian irradiance and is therefore not a solution for the TEM00 mode beam.

M. E. Gracheva and A. S. Gurvich, Izv. Vuzov, Radiofizika 8, 717 (1965).

P. H. Deitz and N. J. Wright, J. Opt. Soc. Am. 59, 527 (1969).

V. I. Tatarski, Sov. Phys. JETP 22, 1083 (1966).

V. I. Tatarski, Sov. Phys. JETP 19, 946 (1964).

V. I. Tatarski and M. E. Gertsenshtein, Sov. Phys. JETP 17, 458 (1963).

D. A. deWolf, J. Opt. Soc. Am. 58, 461 (1968).

Reference 2, p. 136.

J. M. Caborn, Brit. Forestry Comm. Bull. 29, 1950.

Reference 2, p. 40.

L. R. Tsvang, Izv. ANSSSR, Geophys. Ser. 8, 1252 (1960).

Private correspondence, through contract, with D. J. Portman and co–workers, Dept. of Meteorology and Oceanography, University of Michigan, Ann Arbor, Mich.

P. H. Deitz, in Modern Optics, edited by J. Fox (Polytechnic Press, Brooklyn, N. Y., 1967), pp. 766 ff.

Reference 2, p. 215.

Private communication with M. A. Martin.

Photometrics, Inc., independently scanned the films and determined the power spectra of the identical exposures. Their results are in direct agreement with those reported here.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, California Institute of Technology (McGraw—Hill, New York, 1953), Vol. I, p. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.