Abstract

Earlier approximations for multiple scattering by uncorrelated random distributions of large, low-refracting, absorbing particles are generalized by retaining the internal backscattered flux for the case of negligible coherent reflection. For a plane wave normally incident on a slab-region distribution, we obtain more complete results for the flux into a detecting cone at an arbitrary angle of observation, in terms of one-particle scattering functions, scatterer concentration, and distribution thickness. The approximations cover the full range of concentration; although the results near full packing are in general physically unrealizable, they are shown to be in accord with elementary physical considerations. The special forms for the total transmitted flux and total backscattered flux are similar to forms obtained by the diffusion-equation approach. However, the present development, based on averaging the absolute square of the solution of the wave equation for a large number of particles, provides approximations for the bulk parameters and for the flux in terms of results for an isolated scatterer.

© 1970 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorption and Multiple Scattering by Biological Suspensions*

Victor Twersky
J. Opt. Soc. Am. 60(8) 1084-1093 (1970)

Scattered Intensities for Random Distributions—Microwave Data and Optical Applications

C. I. Beard, T. H. Kays, and V. Twersky
Appl. Opt. 4(10) 1299-1315 (1965)

Propagation in correlated distributions of large-spaced scatterers

Victor Twersky
J. Opt. Soc. Am. 73(3) 313-320 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (91)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription