Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).
  2. M. Beran and G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).
  3. I. Weingärtner and E. Menzel, Optik 28, 149 (1968).
  4. M. Françon and S. Mallick, in Progress in Optics VI, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1967), p. 72.
  5. For quasimonochromatic, partially coherent illumination, Γ is often referred to as “mutual intensity” (see Refs. 1 and 2).
  6. E. Menzel and I. Weingärtner, J. Opt. Soc. Am. 57, 842 (1967).
    [Crossref]
  7. R. E. Swing and J. R. Clay, J. Opt. Soc. Am. 57, 1180 (1967).
    [Crossref]
  8. R. J. Becherer and G. B. Parrent, J. Opt. Soc. Am. 57, 1479 (1967).
    [Crossref]
  9. I. Weingärtner and E. Menzel, Optik 26, 442 (1967).
  10. H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).
  11. G. O. Reynolds and J. B. De Velis, IEEE Trans. AP-15, 41 (1967).
    [Crossref]
  12. W. Mirandé and I. Weingärtner, Phys. Letters 28A, 623 (1969).
  13. I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).
  14. W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).
  15. M. Kato and T. Suzuki, J. Opt. Soc. Am. 59, 303 (1969).
    [Crossref]
  16. G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
    [Crossref]
  17. J. B. De Velis, D. J. Raso, and G. O. Reynolds, J. Opt. Soc. Am. 57, 843 (1967).
    [Crossref]
  18. M. Lurie, J. Opt. Soc. Am. 58, 614 (1968).
    [Crossref]
  19. We assume unit magnification only for simplicity of presentation. The method holds for other than unit magnification.
  20. For a bibliography of incoherent holography see O. Bryngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 625 (1968).
    [Crossref]
  21. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
    [Crossref]
  22. O. Bryngdahl in Progress in Optics IV, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1965), p. 38.

1969 (4)

W. Mirandé and I. Weingärtner, Phys. Letters 28A, 623 (1969).

I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).

W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).

M. Kato and T. Suzuki, J. Opt. Soc. Am. 59, 303 (1969).
[Crossref]

1968 (4)

I. Weingärtner and E. Menzel, Optik 28, 149 (1968).

H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).

M. Lurie, J. Opt. Soc. Am. 58, 614 (1968).
[Crossref]

For a bibliography of incoherent holography see O. Bryngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 625 (1968).
[Crossref]

1967 (6)

1965 (1)

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

1962 (1)

Becherer, R. J.

Beran, M.

M. Beran and G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Brumm, D.

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

Bryngdahl, O.

For a bibliography of incoherent holography see O. Bryngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 625 (1968).
[Crossref]

O. Bryngdahl in Progress in Optics IV, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1965), p. 38.

Clay, J. R.

De Velis, J. B.

Françon, M.

M. Françon and S. Mallick, in Progress in Optics VI, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1967), p. 72.

Funkhouser, A.

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

Hischer, H.

H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).

Kato, M.

Leith, E. N.

Lohmann, A.

Lurie, M.

Mallick, S.

M. Françon and S. Mallick, in Progress in Optics VI, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1967), p. 72.

Menzel, E.

W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).

I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).

H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).

I. Weingärtner and E. Menzel, Optik 28, 149 (1968).

I. Weingärtner and E. Menzel, Optik 26, 442 (1967).

E. Menzel and I. Weingärtner, J. Opt. Soc. Am. 57, 842 (1967).
[Crossref]

Mirandé, W.

W. Mirandé and I. Weingärtner, Phys. Letters 28A, 623 (1969).

W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).

I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).

Parrent, G. B.

R. J. Becherer and G. B. Parrent, J. Opt. Soc. Am. 57, 1479 (1967).
[Crossref]

M. Beran and G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).

Raso, D. J.

Restrick, R.

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

Reynolds, G. O.

Stroke, G. W.

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

Suzuki, T.

Swing, R. E.

Upatnieks, J.

Weingärtner, I.

W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).

W. Mirandé and I. Weingärtner, Phys. Letters 28A, 623 (1969).

I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).

H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).

I. Weingärtner and E. Menzel, Optik 28, 149 (1968).

I. Weingärtner and E. Menzel, Optik 26, 442 (1967).

E. Menzel and I. Weingärtner, J. Opt. Soc. Am. 57, 842 (1967).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

IEEE Trans. (1)

G. O. Reynolds and J. B. De Velis, IEEE Trans. AP-15, 41 (1967).
[Crossref]

J. Opt. Soc. Am. (8)

Optik (5)

I. Weingärtner and E. Menzel, Optik 26, 442 (1967).

H. Hischer, E. Menzel, and I. Weingärtner, Optik 27, 42 (1968).

I. Weingärtner and E. Menzel, Optik 28, 149 (1968).

I. Weingärtner, W. Mirandé, and E. Menzel, Optik 29, 87 (1969).

W. Mirandé, I. Weingärtner, and E. Menzel, Optik 29, 537 (1969).

Phys. Letters (2)

W. Mirandé and I. Weingärtner, Phys. Letters 28A, 623 (1969).

G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Letters 18, 274 (1965); Appl. Phys. Letters 6, 178 (1965).
[Crossref]

Other (6)

We assume unit magnification only for simplicity of presentation. The method holds for other than unit magnification.

M. Françon and S. Mallick, in Progress in Optics VI, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1967), p. 72.

For quasimonochromatic, partially coherent illumination, Γ is often referred to as “mutual intensity” (see Refs. 1 and 2).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

M. Beran and G. B. Parrent, Theory of Partial Coherence (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964).

O. Bryngdahl in Progress in Optics IV, E. Wolf, Ed. (North-Holland Publ. Co., Amsterdam, 1965), p. 38.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Formation of the hologram with quasimonochromatic partially coherent light. Γ(x1, x2) is the mutual coherence function to be measured. Two tilted and laterally sheared perfect images of the plane x in the hologram plane H are formed by help of the interferometer SI; SI is sketched only schematically. s is the shear, f is the focal length.

Fig. 2
Fig. 2

Coherent reconstruction with plane-wave illumination: u is the amplitude in the reconstructed image; H is the hologram plane; P is the pupil plane; f is the focal length.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W = V ( ξ , t ) + V ( ξ + s , t + τ ) .
I ( ξ ) = < W W * > = < V ( ξ , t ) V * ( ξ , t ) > + < V ( ξ + s , t + τ ) V * ( ξ + s , t + τ ) > + < V ( ξ , t ) V * ( ξ + s , t + τ ) > + < V ( ξ + s , t + τ ) V * ( ξ , t ) > .
u ( x ) = < V ( x + s , t + τ ) V * ( x , t ) > .
u ( x ) = Γ ( x + s , x ) exp ( - 2 π i ν ¯ β x ) ,
u ( x ) = Γ ( x + s , x ) .