Abstract

The purpose of this research was to investigate the effect of adding various luminances of monochromatic light to a wavelength-discrimination target. As the additive luminance was increased, the size of the discrimination step increased. With a 650-nm added field, the wavelength-discrimination functions showed asymmetrical displacement, with comparatively little change for wavelengths below 480 nm. With a 435-nm addition, the wavelength-discrimination steps increased for all wavelengths. With a 578-nm addition, they increased in the spectral region 500–600 nm.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).
  2. W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
    [Crossref]
  3. R. E. Bedford and G. W. Wyszecki, J. Opt. Soc. Am. 48, 129 (1958).
    [Crossref] [PubMed]
  4. The data presented in Figs. 2–5 required between five and ten sessions for each added-field luminance. The task is difficult and there is considerable variability both within and between subjects. We consider that the functions indicate definite trends. Data from other subjects indicate that the added-field luminances required to produce a given effect (e.g., loss of discrimination above 520 nm with added red) are of similar magnitude to those for JS.
  5. It might be questioned whether the relative symmetry of the functions obtained with a 435-nm added field reflects the fact that we have treated the data in terms of wavelength rather than frequency. There have been numerous suggestions that a frequency rather than a wavelength scale is the appropriate metric for treating visual functions. J. P. Heilman [, J. Opt. Soc. Am. 57, 281 (1967)] has noted that the conversion is nonlinear for the ordinate as well as the abscissa when wavelength-discrimination data are plotted. Even with this conversion, with a red added field, the loss of discrimination in the red is very rapid compared with the loss in the blue. The blue added-field data show greater symmetry when expressed in frequency units; however, the differential effects of the 650- and 435-nm added fields are still apparent.
    [Crossref]
  6. W. D. Wright, J. Physiol. (London) 87, 23 (1936); J. Cohen, Am J. Psychol. 59, 84 (1946); G. S. Brindley, J. Physiol (London) 122, 332 (1953).
    [Crossref] [PubMed]
  7. W. F. Hamilton and H. Laurens, Am. J. Physiol. 65, 569 (1923); W. D. Wright, Researches on Normal and Defective Color Vision (H. Kimpton, London, C. V. Mosby, St. Louis, 1946), p. 203.
  8. A review of the early literature appears in J. Cohen, Psychol. Bull. 43, 121 (1946).
    [Crossref] [PubMed]
  9. F. L. Tufts, Phys. Rev. 25, 433 (1907).
  10. H. DeVries, Physica 14, 319 (1948); W. S. Stiles, Proc. Nat. Acad. Sci. (U.S.) 45, 100 (1959); G. Wald, Science 145, 1007 (1964); H. G. Sperling, N. A. Sidley, W. S. Dockens, and C. L. Jolliffe, J. Opt. Soc. Am. 58, 263 (1968).
    [Crossref] [PubMed]
  11. R. M. Boynton, G. Kandel, and J. W. Onley, J. Opt. Soc. Am. 49, 654 (1959).
    [Crossref] [PubMed]
  12. A protanope showed a similar displacement of his minimum toward shorter wavelengths with a high-luminance red added field.

1967 (1)

1959 (1)

1958 (1)

1948 (1)

H. DeVries, Physica 14, 319 (1948); W. S. Stiles, Proc. Nat. Acad. Sci. (U.S.) 45, 100 (1959); G. Wald, Science 145, 1007 (1964); H. G. Sperling, N. A. Sidley, W. S. Dockens, and C. L. Jolliffe, J. Opt. Soc. Am. 58, 263 (1968).
[Crossref] [PubMed]

1947 (1)

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

1946 (1)

A review of the early literature appears in J. Cohen, Psychol. Bull. 43, 121 (1946).
[Crossref] [PubMed]

1936 (1)

W. D. Wright, J. Physiol. (London) 87, 23 (1936); J. Cohen, Am J. Psychol. 59, 84 (1946); G. S. Brindley, J. Physiol (London) 122, 332 (1953).
[Crossref] [PubMed]

1934 (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[Crossref]

1923 (1)

W. F. Hamilton and H. Laurens, Am. J. Physiol. 65, 569 (1923); W. D. Wright, Researches on Normal and Defective Color Vision (H. Kimpton, London, C. V. Mosby, St. Louis, 1946), p. 203.

1907 (1)

F. L. Tufts, Phys. Rev. 25, 433 (1907).

Bedford, R. E.

Boynton, R. M.

Cohen, J.

A review of the early literature appears in J. Cohen, Psychol. Bull. 43, 121 (1946).
[Crossref] [PubMed]

DeVries, H.

H. DeVries, Physica 14, 319 (1948); W. S. Stiles, Proc. Nat. Acad. Sci. (U.S.) 45, 100 (1959); G. Wald, Science 145, 1007 (1964); H. G. Sperling, N. A. Sidley, W. S. Dockens, and C. L. Jolliffe, J. Opt. Soc. Am. 58, 263 (1968).
[Crossref] [PubMed]

Hamilton, W. F.

W. F. Hamilton and H. Laurens, Am. J. Physiol. 65, 569 (1923); W. D. Wright, Researches on Normal and Defective Color Vision (H. Kimpton, London, C. V. Mosby, St. Louis, 1946), p. 203.

Heilman, J. P.

Kandel, G.

Laurens, H.

W. F. Hamilton and H. Laurens, Am. J. Physiol. 65, 569 (1923); W. D. Wright, Researches on Normal and Defective Color Vision (H. Kimpton, London, C. V. Mosby, St. Louis, 1946), p. 203.

Onley, J. W.

Pitt, F. H. G.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[Crossref]

Thomson, L. C.

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

Tufts, F. L.

F. L. Tufts, Phys. Rev. 25, 433 (1907).

Wright, W. D.

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

W. D. Wright, J. Physiol. (London) 87, 23 (1936); J. Cohen, Am J. Psychol. 59, 84 (1946); G. S. Brindley, J. Physiol (London) 122, 332 (1953).
[Crossref] [PubMed]

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[Crossref]

Wyszecki, G. W.

Am. J. Physiol. (1)

W. F. Hamilton and H. Laurens, Am. J. Physiol. 65, 569 (1923); W. D. Wright, Researches on Normal and Defective Color Vision (H. Kimpton, London, C. V. Mosby, St. Louis, 1946), p. 203.

J. Opt. Soc. Am. (3)

J. Physiol. (London) (2)

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

W. D. Wright, J. Physiol. (London) 87, 23 (1936); J. Cohen, Am J. Psychol. 59, 84 (1946); G. S. Brindley, J. Physiol (London) 122, 332 (1953).
[Crossref] [PubMed]

Phys. Rev. (1)

F. L. Tufts, Phys. Rev. 25, 433 (1907).

Physica (1)

H. DeVries, Physica 14, 319 (1948); W. S. Stiles, Proc. Nat. Acad. Sci. (U.S.) 45, 100 (1959); G. Wald, Science 145, 1007 (1964); H. G. Sperling, N. A. Sidley, W. S. Dockens, and C. L. Jolliffe, J. Opt. Soc. Am. 58, 263 (1968).
[Crossref] [PubMed]

Proc. Phys. Soc. (London) (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[Crossref]

Psychol. Bull. (1)

A review of the early literature appears in J. Cohen, Psychol. Bull. 43, 121 (1946).
[Crossref] [PubMed]

Other (2)

The data presented in Figs. 2–5 required between five and ten sessions for each added-field luminance. The task is difficult and there is considerable variability both within and between subjects. We consider that the functions indicate definite trends. Data from other subjects indicate that the added-field luminances required to produce a given effect (e.g., loss of discrimination above 520 nm with added red) are of similar magnitude to those for JS.

A protanope showed a similar displacement of his minimum toward shorter wavelengths with a high-luminance red added field.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of apparatus.

Fig. 2
Fig. 2

(a) Wavelength-discrimination functions obtained from four observers: ○, JS; △, MS; ▽, BF; and □, LM. (b) Comparison of the average wavelength-discrimination function of our observers (●) with the functions of Bedford and Wyszecki (□) and Wright and Pitt (△).

Fig. 3
Fig. 3

Wavelength-discrimination step Δλ shown as a function of wavelength for subject JS. The parameter is the luminance of added field of wavelength 650 nm. ×, no added field; △, 25 td; ▲, 250 td; ○, 320 td; ■, 500 td; and ●, 800 td.

Fig. 4
Fig. 4

Wavelength-discrimination step Δλ shown as a function of wavelength for subject JS. The parameter is the luminance of added field of wavelength 435 nm. ×, no added field; △, 50 td; ■, 100 td; ○, 160 td; and ●, 250 td.

Fig. 5
Fig. 5

Wavelength-discrimination step Δλ shown as a function of wavelength for subject BF. The parameter is the luminance of added 578 nm. ×, no added field; △, 127 td; ■, 1270 td; and ○, 1660 td.

Fig. 6
Fig. 6

Position of the standard stimulus in the u,v diagram for various luminances of the three added fields. (a) Added field is 435 nm. ▲, 16 td; △, 50 td; ■, 100 td; □, 160 td; and ●, 250 td. (b) Added field is 578 nm. ■, 16 td; and △, 127 td. (c) Added field is 650 nm. □, 25 td; ▲, 80 td; and △, 250 td.

Tables (4)

Tables Icon

Table I Wavelength-discrimination steps and correlated u,v distances for four subjects.

Tables Icon

Table II Wavelength-discrimination steps and correlated u,v distances with a 650-nm added field.

Tables Icon

Table III Wavelength-discrimination steps and correlated u,v distances with a 435-nm added field.

Tables Icon

Table IV Wavelength-discrimination steps and correlated u,v distances with a 578-nm added field.