Abstract

The Zeeman effect in the two strongest mixed multipole lines of neutral bismuth was studied with apparatus of high resolving power and magnetic fields up to 6400 G. Remarkable differences of intensity distribution among the ΔM = ±1 components, caused by interference between the magnetic-dipole and the electric-quadrupole radiation, are found for the two directions of observation (longitudinal L and transverse π). This interference effect was observed for the first time in a spectrum with hyperfine structure. In stronger fields, the transitions investigated are of the type ΔM = MF′ − M″, where M″ = MJ″ + MI″; the individual components belonging to various MF′ and MI″ formed unresolved groups. For the line 4615Å(P2°12S4°32), the sum of the interference terms decreases the intensities of groups with MJ=±32 and increases the intensities of groups with MJ=±12 in the L direction; the reverse is true for the transverse π direction. The line 6476Å(D2°52S4°32) exhibits the opposite behavior. In spite of the complex, and to a great extent unresolved, detailed structure of the Zeeman pattern at low as well as at high fields, the observations of finer details seem to support the expectation that coupling of the J vector to the nuclear moment I does not destroy, but only modifies, the interference terms so that they operate on the individual hyperfine-structure components.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Milianczuk, Bull. Polish Acad. Sci., 430 (1935).
  2. For references see S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
    [CrossRef]
  3. M. E. Hults, J. Opt. Soc. Am. 56, 1298 (1966).
    [CrossRef]
  4. S. Mrozowski, Phys. Rev. 69, 169 (1946).
    [CrossRef]
  5. M. E. Hults and S. Mrozowski, J. Opt. Soc. Am. 54, 855 (1964).
    [CrossRef]
  6. S. Mrozowski and J. Heldt, J. Opt. Soc. Am. 57, 565 (1967).
    [CrossRef]
  7. R. H. Garstang, J. Res. Natl. Bur. Std. (U.S.) 68A, 61 (1964).
    [CrossRef]
  8. J. Heldt, J. Opt. Soc. Am. 58, 1516 (1968).
    [CrossRef]
  9. V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
    [CrossRef]
  10. R. S. Title and K. F. Smith, Phil. Mag. 5, 1281 (1960).
    [CrossRef]
  11. S. Mrozowski, Phys. Rev. 62, 526 (1942).
    [CrossRef]
  12. S. Mrozowski, J. Opt. Soc. Am. 46, 663 (1956).
  13. G. W. Charles, J. Opt. Soc. Am. 56, 1292 (1966).
    [CrossRef]

1968 (2)

J. Heldt, J. Opt. Soc. Am. 58, 1516 (1968).
[CrossRef]

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

1967 (1)

S. Mrozowski and J. Heldt, J. Opt. Soc. Am. 57, 565 (1967).
[CrossRef]

1966 (2)

1964 (2)

R. H. Garstang, J. Res. Natl. Bur. Std. (U.S.) 68A, 61 (1964).
[CrossRef]

M. E. Hults and S. Mrozowski, J. Opt. Soc. Am. 54, 855 (1964).
[CrossRef]

1960 (1)

R. S. Title and K. F. Smith, Phil. Mag. 5, 1281 (1960).
[CrossRef]

1956 (1)

1946 (1)

S. Mrozowski, Phys. Rev. 69, 169 (1946).
[CrossRef]

1944 (1)

For references see S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[CrossRef]

1942 (1)

S. Mrozowski, Phys. Rev. 62, 526 (1942).
[CrossRef]

1935 (1)

B. Milianczuk, Bull. Polish Acad. Sci., 430 (1935).

Charles, G. W.

Ehlers, V. J.

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

Garstang, R. H.

R. H. Garstang, J. Res. Natl. Bur. Std. (U.S.) 68A, 61 (1964).
[CrossRef]

Heldt, J.

J. Heldt, J. Opt. Soc. Am. 58, 1516 (1968).
[CrossRef]

S. Mrozowski and J. Heldt, J. Opt. Soc. Am. 57, 565 (1967).
[CrossRef]

Hults, M. E.

Kabasakal, Y.

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

Milianczuk, B.

B. Milianczuk, Bull. Polish Acad. Sci., 430 (1935).

Mrozowski, S.

S. Mrozowski and J. Heldt, J. Opt. Soc. Am. 57, 565 (1967).
[CrossRef]

M. E. Hults and S. Mrozowski, J. Opt. Soc. Am. 54, 855 (1964).
[CrossRef]

S. Mrozowski, J. Opt. Soc. Am. 46, 663 (1956).

S. Mrozowski, Phys. Rev. 69, 169 (1946).
[CrossRef]

For references see S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[CrossRef]

S. Mrozowski, Phys. Rev. 62, 526 (1942).
[CrossRef]

Shugart, H. A.

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

Smith, K. F.

R. S. Title and K. F. Smith, Phil. Mag. 5, 1281 (1960).
[CrossRef]

Tezer, O.

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

Title, R. S.

R. S. Title and K. F. Smith, Phil. Mag. 5, 1281 (1960).
[CrossRef]

Bull. Polish Acad. Sci. (1)

B. Milianczuk, Bull. Polish Acad. Sci., 430 (1935).

J. Opt. Soc. Am. (6)

J. Res. Natl. Bur. Std. (U.S.) (1)

R. H. Garstang, J. Res. Natl. Bur. Std. (U.S.) 68A, 61 (1964).
[CrossRef]

Phil. Mag. (1)

R. S. Title and K. F. Smith, Phil. Mag. 5, 1281 (1960).
[CrossRef]

Phys. Rev. (3)

S. Mrozowski, Phys. Rev. 62, 526 (1942).
[CrossRef]

V. J. Ehlers, Y. Kabasakal, H. A. Shugart, and O. Tezer, Phys. Rev. 176, 25 (1968).
[CrossRef]

S. Mrozowski, Phys. Rev. 69, 169 (1946).
[CrossRef]

Rev. Mod. Phys. (1)

For references see S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Top view of arrangement for observing the interference effect: discharge tube D with appendix A, RF external electrodes, main furnace F1 and metal pressure-controlling furnace F2, mirror M, cooling coils C, and magnet poles NS.

Fig. 2
Fig. 2

Photographs of the Zeeman patterns of the 4615-Å line of Bi i taken at fields (A) 900, (B) 3800, (C) 4800, and (D) 6400 G using étalon separators of (A), 6.36 mm and (B), (C), and (D), 1.19 mm. L longitudinal, π and σ transverse direction of observation. The differences of the π and L patterns indicate the presence of interference terms.

Fig. 3
Fig. 3

Graphical presentation of the Zeeman patterns as observed for the 4615-Å line in the two directions longitudinal L and transverse π with variation of the field from 900 to 6400 G. The hfs in absence of a magnetic field is given in the center according to Ref. 8.

Fig. 4
Fig. 4

Microphotometer traces for the Zeeman pattern of the 4615-Å line of Bi i at 6400 G in the L (continuous) and π (broken curve) direction for a 1.19-mm étalon separator. Lines (groups of components) corresponding to M J = ± 3 2 ( α , δ , χ , ) are marked by full lines, and those to M J = ± 1 2 ( β , γ , ψ , φ ) are marked by broken lines. Interference terms are positive for M J = ± 1 2 in L direction and M J = ± 3 2 in π direction. Below, the zero-field hfs is indicated for comparison.

Fig. 5
Fig. 5

The computed Zeeman levels for the upper state P 2 ° 1 2 of the 6p3 configuration of Bi i.

Fig. 6
Fig. 6

The computed Zeeman levels for the ground state S 4 ° 3 2 of Bi i.

Fig. 7
Fig. 7

Predicted Zeeman patterns for the 4615-Å line of Bi i in L, π, and σ direction obtained by use of the data from Figs. 5 and 6, as compared with the observed structure at 6400 G.

Fig. 8
Fig. 8

Microphotometer traces of the Zeeman pattern of the 4615-Å line of Bi i as obtained at 900 G with a 6.36 separator in L and π direction. Below are the predicted positions of the great number of Zeeman components as determined from the data of Figs. 5 and 6, and the zero-field hfs (all in the same scale).

Fig. 9
Fig. 9

Photographs of the Zeeman patterns of the 6476-Å line of Bi i taken at field of 2000 G with a 1.96-mm separator.

Fig. 10
Fig. 10

The computed Zeeman levels for the upper state D 2 ° 5 2 of the 6p3 configuration of Bi i.

Fig. 11
Fig. 11

Microphotometer traces of the Zeeman pattern of the 6476-Å line of Bi i at 2000 G in the L and π direction. The block diagrams show the predicted distribution of the groups of lines corresponding to M J = ± 3 2 and M J = ± 1 2. Lines observed strengthened in the given direction are drawn full and those weakened, broken. Below, the zero-field hfs according to Ref. 4.

Fig. 12
Fig. 12

Microphotometer trace of the σ Zeeman pattern of the 6476-Å line of Bi i at 2000 G in the transverse direction. The block diagram shows the predicted distribution of groups with ΔM = 0.