Abstract

A list of 848 low-excitation spectral lines of Tm iii has been obtained by utilizing the sliding-spark light source at a peak current of 6 A. An analysis of these lines yielded 108 energy levels belonging to the configurations 4f13, 4f125d, 4f126s, and 4f126p. The classified lines and level values are presented as well as a theoretical interpretation of these configurations.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
    [Crossref]
  2. J. Sugar, J. Opt. Soc. Am. 55, 33 (1965).
    [Crossref]
  3. J. Sugar, J. Opt. Soc. Am. 53, 831 (1963).
    [Crossref]
  4. B. W. Bryant, J. Opt. Soc. Am. 55, 771 (1965).
    [Crossref]
  5. A. Dupont, Doctoral dissertation, The Johns Hopkins University, Baltimore (1966).
  6. W. R. Callahan, J. Opt. Soc. Am. 53, 695 (1963).
    [Crossref]
  7. J. H. McElaney, J. Opt. Soc. Am. 57, 870 (1967).
    [Crossref]
  8. P. Camus, J. Physique 27, 717 (1966).
    [Crossref]
  9. N. Sack, Phys. Rev. 102, 1302 (1956).
    [Crossref]
  10. Z. B. Goldschmidt, in Spectroscopic and Group Theoretical Methods in Physics, F. Bloch and et al., Eds. (John Wiley & Sons, Inc., New York, 1968).
  11. J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 73A, 333 (1969).
    [Crossref]
  12. S. Feneuille and N. Pelletier–Allard, Physica 40, 347 (1969).
    [Crossref]
  13. H. N. Russell and W. F. Meggers, J. Res. Natl. Bur. Std. (U. S.) 9, 625 (1932).
  14. U. Fano, F. Pratts, and Z. Goldschmidt, Phys. Rev. 129, 2643 (1963).
    [Crossref]
  15. A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).
  16. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935).
  17. G. Racah, Phys. Rev. 76, 1352 (1949).
    [Crossref]
  18. J. Sugar and J. Reader, J. Opt. Soc. Am. 55, 1286 (1965).
    [Crossref]

1969 (2)

J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 73A, 333 (1969).
[Crossref]

S. Feneuille and N. Pelletier–Allard, Physica 40, 347 (1969).
[Crossref]

1967 (1)

1966 (1)

P. Camus, J. Physique 27, 717 (1966).
[Crossref]

1965 (3)

1963 (3)

1960 (1)

A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).

1956 (1)

N. Sack, Phys. Rev. 102, 1302 (1956).
[Crossref]

1949 (1)

G. Racah, Phys. Rev. 76, 1352 (1949).
[Crossref]

1937 (1)

H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
[Crossref]

1932 (1)

H. N. Russell and W. F. Meggers, J. Res. Natl. Bur. Std. (U. S.) 9, 625 (1932).

Bryant, B. W.

Callahan, W. R.

Camus, P.

P. Camus, J. Physique 27, 717 (1966).
[Crossref]

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935).

Dupont, A.

A. Dupont, Doctoral dissertation, The Johns Hopkins University, Baltimore (1966).

Fano, U.

U. Fano, F. Pratts, and Z. Goldschmidt, Phys. Rev. 129, 2643 (1963).
[Crossref]

Feneuille, S.

S. Feneuille and N. Pelletier–Allard, Physica 40, 347 (1969).
[Crossref]

Goldschmidt, Z.

U. Fano, F. Pratts, and Z. Goldschmidt, Phys. Rev. 129, 2643 (1963).
[Crossref]

Goldschmidt, Z. B.

Z. B. Goldschmidt, in Spectroscopic and Group Theoretical Methods in Physics, F. Bloch and et al., Eds. (John Wiley & Sons, Inc., New York, 1968).

Jucys, A. P.

A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).

King, R. B.

H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
[Crossref]

Lang, R. J.

H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
[Crossref]

Levinsonas, I. B.

A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).

McElaney, J. H.

Meggers, W. F.

H. N. Russell and W. F. Meggers, J. Res. Natl. Bur. Std. (U. S.) 9, 625 (1932).

Pelletier–Allard, N.

S. Feneuille and N. Pelletier–Allard, Physica 40, 347 (1969).
[Crossref]

Pratts, F.

U. Fano, F. Pratts, and Z. Goldschmidt, Phys. Rev. 129, 2643 (1963).
[Crossref]

Racah, G.

G. Racah, Phys. Rev. 76, 1352 (1949).
[Crossref]

Reader, J.

Russell, H. N.

H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
[Crossref]

H. N. Russell and W. F. Meggers, J. Res. Natl. Bur. Std. (U. S.) 9, 625 (1932).

Sack, N.

N. Sack, Phys. Rev. 102, 1302 (1956).
[Crossref]

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935).

Sugar, J.

Vanagas, V. V.

A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).

J. Opt. Soc. Am. (6)

J. Physique (1)

P. Camus, J. Physique 27, 717 (1966).
[Crossref]

J. Res. Natl. Bur. Std. (U. S.) (2)

J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 73A, 333 (1969).
[Crossref]

H. N. Russell and W. F. Meggers, J. Res. Natl. Bur. Std. (U. S.) 9, 625 (1932).

Mathematical Apparatus of the Theory of Angular Momentum (1)

A. P. Jucys, I. B. Levinsonas, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Akad. Nauk Lit. SSR Inst. Fiz. Mat., Publ. No. 3 (1960).

Phys. Rev. (4)

H. N. Russell, R. B. King, and R. J. Lang, Phys. Rev. 52, 456 (1937).
[Crossref]

G. Racah, Phys. Rev. 76, 1352 (1949).
[Crossref]

U. Fano, F. Pratts, and Z. Goldschmidt, Phys. Rev. 129, 2643 (1963).
[Crossref]

N. Sack, Phys. Rev. 102, 1302 (1956).
[Crossref]

Physica (1)

S. Feneuille and N. Pelletier–Allard, Physica 40, 347 (1969).
[Crossref]

Other (3)

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935).

Z. B. Goldschmidt, in Spectroscopic and Group Theoretical Methods in Physics, F. Bloch and et al., Eds. (John Wiley & Sons, Inc., New York, 1968).

A. Dupont, Doctoral dissertation, The Johns Hopkins University, Baltimore (1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Variation of the spin–orbit parameter of the 6p electron in the doubly ionized rare earths. The end points are La iii (6p) and Yb iii (4f136p).

Fig. 2
Fig. 2

Interval between configurations (measured between lowest levels) for doubly ionized rare earths. Curve A: T(6p)–T(6s); curve B: T(6s)–T(5d).

Fig. 3
Fig. 3

Observed energy levels of the 4f125d and 4f126s configurations of Tm iii. Levels are connected that belong to the same J1J2 coupling term. The term designations show the 4f12 core level and the outer electron. For the 5d electron, the j value is also given. Where terms are incomplete, the calculated positions of the missing levels are indicated by dashed lines.

Fig. 4
Fig. 4

Observed energy levels of the 4f126p configuration of Tm iii. Levels are connected that belong to the same J1J2 coupling term. The term designations show the 4f12 core level and the j value of the outer electron. Where terms are incomplete, the calculated positions of the missing levels are indicated by dashed lines.

Fig. 5
Fig. 5

Interval between the centers of gravity of the 4fN6s and 4fN7s configurations of the doubly ionized rare earths. Experimental data for La iii, Ce iii, Pr iii, and Yb iii are taken from Refs. 13, 2, 3, and 4, respectively.

Tables (6)

Tables Icon

Table I Energy levels of Tm iii.

Tables Icon

Table II Fitted parameter values and associated standard errors for 4f12(5d + 6s) configurations of Tm iii in units of cm−1.

Tables Icon

Table III Calculated energy levels and compositions of the mixed 4f125d and 4f126s configurations of Tm iii. Negative eigenvector components are denoted by asterisks.

Tables Icon

Table IV Fitted parameter values and associated standard errors for the 4f126p configuration of Tm iii.

Tables Icon

Table V Calculated energy levels and compositions of the 4f126p configuration of Tm iii. Negative eigenvector components are denoted by asterisks.

Tables Icon

Table VI Classified lines of Tm iii

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T = R Z 2 ( 1 n * ( 6 s ) 2 - 1 n * ( 7 s ) 2 )