Abstract

This paper reports the successful computational determination of structural detail in a simple transparent object through holographic measurement of scattered monochromatic light. The complex disturbance of the scattered light is measured in amplitude and phase, along a line transverse to the illumination in the Fresnel zone of the object. The scattering potential of the object is then calculated along a parallel line using the field data and a new inverse scattering theory. The results agree well with the known parameters of the two test objects, a high-quality and a low-quality right parallelepiped aligned with two faces normal to the illumination. This experiment is believed to be the first which includes the quantitative reconstruction of structure in a physical object from measurement of scattered light. The technique is somewhat similar to that employed in connection with reconstruction of crystal structures from x-ray diffraction experiments.

© 1970 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconstruction of Inhomogeneous Scattering Objects from Holograms

William H. Carter and Pin-Chin Ho
Appl. Opt. 13(1) 162-172 (1974)

Large objects reconstructed from computer-generated holograms

Christian Frère and Detlef Leseberg
Appl. Opt. 28(12) 2422-2425 (1989)

Applications of fractional transforms to object reconstruction from in-line holograms

Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, and Hans J. Tiziani
Opt. Lett. 29(15) 1793-1795 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription