Abstract

This paper investigates Fresnel diffraction from plane-wave gaussian beams truncated by circular apertures. Kirchhoff’s integral has been evaluated analytically and (analytical) expressions are derived, in terms of infinite series, for the irradiance and total power of the diffracted field. Some graphs are presented for Fraunhofer conditions. The results obtained greatly reduce the labor of numerically computing the irradiance and the power.

PDF Article

References

  • View by:
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), Ch. VIII.
  2. J. P. Campbell and L. G. DeShazer, J. Opt. Soc. Am. 59, 1427 (1969).
  3. G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1966), p. 132.
  4. Reference 1, p. 396.
  5. Reference 3, p. 136.
  6. Reference 1, p. 398.
  7. Modern Computing Methods, edited by E. T. Goodwin (H. M. Stationery Office, London, 1962), Ch. 13.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), Ch. VIII.

Campbell, J. P.

J. P. Campbell and L. G. DeShazer, J. Opt. Soc. Am. 59, 1427 (1969).

DeShazer, L. G.

J. P. Campbell and L. G. DeShazer, J. Opt. Soc. Am. 59, 1427 (1969).

Watson, G. N.

G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1966), p. 132.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), Ch. VIII.

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), Ch. VIII.

J. P. Campbell and L. G. DeShazer, J. Opt. Soc. Am. 59, 1427 (1969).

G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1966), p. 132.

Reference 1, p. 396.

Reference 3, p. 136.

Reference 1, p. 398.

Modern Computing Methods, edited by E. T. Goodwin (H. M. Stationery Office, London, 1962), Ch. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.