Abstract

Through a photochemical reaction of nitrogen dioxide and 2-trans-butene, peroxyacetyl nitrate (PAN) is formed, which plays an important role in polluted air. The decomposition of this has been studied under two conditions: continued irradiation and in the absence of further irradiation. It was found that the rate of decomposition differed markedly in these two conditions. Different reaction mechanisms are postulated to account for this difference.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
    [Crossref]
  2. E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).
  3. N. A. Renzetti and R. J. Bryan, J. Air Pollution Control Assoc. 11, 421 (1961).
    [Crossref]
  4. D. J. Lovell and J. Strong, Appl. Opt. 8, 1673 (1969).
    [Crossref] [PubMed]
  5. C. S. Tuesday, in Proc. Intern. Symp. Chem. Reac. Lower Upper Atmosph., San Francisco, CA, 1961, pp. 15–49.

1969 (1)

1961 (1)

N. A. Renzetti and R. J. Bryan, J. Air Pollution Control Assoc. 11, 421 (1961).
[Crossref]

1960 (1)

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

1956 (1)

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

Bryan, R. J.

N. A. Renzetti and R. J. Bryan, J. Air Pollution Control Assoc. 11, 421 (1961).
[Crossref]

Darley, E. F.

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

Doerr, R. C.

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

Hanst, P. L.

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

Lovell, D. J.

Renzetti, N. A.

N. A. Renzetti and R. J. Bryan, J. Air Pollution Control Assoc. 11, 421 (1961).
[Crossref]

Scott, W. E.

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

Stephens, E. R.

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

Strong, J.

Taylor, O. C.

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

Tuesday, C. S.

C. S. Tuesday, in Proc. Intern. Symp. Chem. Reac. Lower Upper Atmosph., San Francisco, CA, 1961, pp. 15–49.

Appl. Opt. (1)

Ind. Eng. Chem. (1)

E. R. Stephens, P. L. Hanst, R. C. Doerr, and W. E. Scott, Ind. Eng. Chem. 48, 1498 (1956).
[Crossref]

J. Air Pollution Control Assoc. (1)

N. A. Renzetti and R. J. Bryan, J. Air Pollution Control Assoc. 11, 421 (1961).
[Crossref]

Proc. Am. Petrol. Inst., Div. Refining (1)

E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Proc. Am. Petrol. Inst., Div. Refining 40, III (1960).

Other (1)

C. S. Tuesday, in Proc. Intern. Symp. Chem. Reac. Lower Upper Atmosph., San Francisco, CA, 1961, pp. 15–49.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic drawing of the long-path absorption cell. Radiation from a globar (G) is reflected by a 15-cm-diam mirror of 27-cm radius (M1). Since the two Pfund mirrors (M2) are separated by 30 m, the scale is changed in this interval. These mirrors are 90 cm in diameter and have a radius of 30 m. The mirrors M3 and M4 relay the radiation onto the spectrometer slit S1, matching the focal ratio of the spectrometer.

Fig. 2
Fig. 2

The spectral radiant emittance of the fluorescent lamps used.

Fig. 3
Fig. 3

Observed spectra in the region 6.3–8.4 μ. The upper spectrum was observed prior to any irradiation. The next was obtained after 11 h of irradiation. The third was obtained after eight days of continued irradiation. The lower curve was obtained four days later, during which time there was no irradiation.

Fig. 4
Fig. 4

Observed spectra in the region 8.4–10.1 μ. Same as Fig. 3.

Fig. 5
Fig. 5

Observed spectra in the region 12.3–15.4 μ. Same as Fig. 3.

Fig. 6
Fig. 6

Observed spectra in the region 15.0–20.0 μ. Same as Fig. 3.

Fig. 7
Fig. 7

Observed spectra in the region 20–26 μ. Same as Fig. 3.

Fig. 8
Fig. 8

The changes of relative absorption of PAN at 8.6 μ. Open circles indicate measurements made of decomposition with continued irradiation; filled circles were obtained during the experiment made without irradiation.

Fig. 9
Fig. 9

The changes of relative absorption of PAN at 12.6 μ. Same as Fig. 8.

Tables (2)

Tables Icon

Table I Reaction products of 2-trans-butene and nitrogen dioxide photo-oxidation.

Tables Icon

Table II Decomposition products.