Abstract

Changes of threshold luminance for a test flash (Ft) were studied as a function of temporal displacement between two conditioning flashes (Fc1) and (Fc2), viewed with either the tested eye (monocular stimulation) or the homologous retinal location in the opposite eye (interocular stimulation). Under both conditions, the threshold was elevated most near the beginning of Fc1, fell to a minimum between flashes, and rose again to a secondary maximum near the beginning of Fc2. The form of this function changed dramatically as the Fc1Fc2 interval decreased, the greatest effect being obtained with interocular stimulation. When a train of conditioning flashes (Fc1Fc5) at or near fusion frequency was utilized, temporal oscillations of threshold luminance were detectable with monocular but not with interocular stimulation.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Landis, An Annotated Bibliography of Flicker Fusion Phenomena, Armed Forces National Research Council (Vision Committee) (University of Michigan Press, Ann Arbor, 1953).
  2. S. Hecht and E. Wolf, J. Gen. Physiol. 15, 369 (1932).
  3. R. Granit, Am. J. Physiol. 95, 41 (1930).
  4. R. Granit and P. Harper, Am. J. Physiol. 95, 211 (1930).
  5. C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).
  6. C. Sherrington, The Integrative Action of the Nervous System (Constable, London, 1906), Ch. 19.
  7. G. J. Thomas, Am. J. Psychol. 68, 37 (1955).
    [CrossRef] [PubMed]
  8. J. C. Armington, in Flicker; Proceedings of the Symposium on the Physiology of Flicker, H. E. Henkes and L. H. van der Tweel, Eds. (W. Junk, the Hague, 1964), pp. 194–206.
  9. A. Rémond, in Ref. 8, pp. 157–193.
  10. L. H. van der Tweel, in Ref. 8, pp. 287–305.
  11. W. S. Battersby and I. H. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
    [CrossRef] [PubMed]
  12. R. M. Boynton, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, 1961), pp. 739–756.
  13. R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
    [CrossRef]
  14. M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 55, 560 (1965).
    [CrossRef] [PubMed]
  15. I. H. Wagman and W. S. Battersby, Am. J. Physiol. 197, 1237 (1959).
  16. W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
    [PubMed]
  17. W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
    [PubMed]
  18. W. S. Battersby and R. Jaffe, J. Exp. Psychol. 46, 154 (1953).
    [CrossRef] [PubMed]
  19. As has been noted repeatedly, photochemical processes could not obviously produce increments of threshold that occur whenthe test flash precedes the conditioning flash, because the latter has not yet impinged upon the retina. More important, according to photochemical theory, progressive exposure to light (either flickering or steady) should bleach more photolabile pigment with increases in time, leading to a decrease of sensitivity; in fact the opposite occurs.
  20. R. Granit, Sensory Mechanisms of thle Retina (Oxford University Press, London, 1947), pp. 171–187.
  21. R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), pp. 62–78.
  22. R. Jung, in Ref. 12, pp. 627–674.

1965 (1)

M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 55, 560 (1965).
[CrossRef] [PubMed]

1964 (1)

W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
[PubMed]

1962 (1)

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

1961 (1)

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

1959 (2)

W. S. Battersby and I. H. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
[CrossRef] [PubMed]

I. H. Wagman and W. S. Battersby, Am. J. Physiol. 197, 1237 (1959).

1955 (1)

G. J. Thomas, Am. J. Psychol. 68, 37 (1955).
[CrossRef] [PubMed]

1953 (1)

W. S. Battersby and R. Jaffe, J. Exp. Psychol. 46, 154 (1953).
[CrossRef] [PubMed]

1932 (1)

S. Hecht and E. Wolf, J. Gen. Physiol. 15, 369 (1932).

1931 (1)

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

1930 (2)

R. Granit, Am. J. Physiol. 95, 41 (1930).

R. Granit and P. Harper, Am. J. Physiol. 95, 211 (1930).

Armington, J. C.

J. C. Armington, in Flicker; Proceedings of the Symposium on the Physiology of Flicker, H. E. Henkes and L. H. van der Tweel, Eds. (W. Junk, the Hague, 1964), pp. 194–206.

Battersby, W. S.

W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
[PubMed]

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

I. H. Wagman and W. S. Battersby, Am. J. Physiol. 197, 1237 (1959).

W. S. Battersby and I. H. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
[CrossRef] [PubMed]

W. S. Battersby and R. Jaffe, J. Exp. Psychol. 46, 154 (1953).
[CrossRef] [PubMed]

Boynton, R. M.

M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 55, 560 (1965).
[CrossRef] [PubMed]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

R. M. Boynton, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, 1961), pp. 739–756.

Graham, C. H.

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

Granit, R.

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

R. Granit, Am. J. Physiol. 95, 41 (1930).

R. Granit and P. Harper, Am. J. Physiol. 95, 211 (1930).

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), pp. 62–78.

R. Granit, Sensory Mechanisms of thle Retina (Oxford University Press, London, 1947), pp. 171–187.

Harper, P.

R. Granit and P. Harper, Am. J. Physiol. 95, 211 (1930).

Hecht, S.

S. Hecht and E. Wolf, J. Gen. Physiol. 15, 369 (1932).

Ikeda, M.

M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 55, 560 (1965).
[CrossRef] [PubMed]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

Jaffe, R.

W. S. Battersby and R. Jaffe, J. Exp. Psychol. 46, 154 (1953).
[CrossRef] [PubMed]

Jung, R.

R. Jung, in Ref. 12, pp. 627–674.

Landis, C.

C. Landis, An Annotated Bibliography of Flicker Fusion Phenomena, Armed Forces National Research Council (Vision Committee) (University of Michigan Press, Ann Arbor, 1953).

Oesterreich, R. E.

W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
[PubMed]

Rémond, A.

A. Rémond, in Ref. 8, pp. 157–193.

Sherrington, C.

C. Sherrington, The Integrative Action of the Nervous System (Constable, London, 1906), Ch. 19.

Sturr, J. F.

W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
[PubMed]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

Thomas, G. J.

G. J. Thomas, Am. J. Psychol. 68, 37 (1955).
[CrossRef] [PubMed]

van der Tweel, L. H.

L. H. van der Tweel, in Ref. 8, pp. 287–305.

Wagman, I. H.

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

W. S. Battersby and I. H. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
[CrossRef] [PubMed]

I. H. Wagman and W. S. Battersby, Am. J. Physiol. 197, 1237 (1959).

Wolf, E.

S. Hecht and E. Wolf, J. Gen. Physiol. 15, 369 (1932).

Other (22)

C. Landis, An Annotated Bibliography of Flicker Fusion Phenomena, Armed Forces National Research Council (Vision Committee) (University of Michigan Press, Ann Arbor, 1953).

S. Hecht and E. Wolf, J. Gen. Physiol. 15, 369 (1932).

R. Granit, Am. J. Physiol. 95, 41 (1930).

R. Granit and P. Harper, Am. J. Physiol. 95, 211 (1930).

C. H. Graham and R. Granit, Am. J. Physiol. 98, 664 (1931).

C. Sherrington, The Integrative Action of the Nervous System (Constable, London, 1906), Ch. 19.

G. J. Thomas, Am. J. Psychol. 68, 37 (1955).
[CrossRef] [PubMed]

J. C. Armington, in Flicker; Proceedings of the Symposium on the Physiology of Flicker, H. E. Henkes and L. H. van der Tweel, Eds. (W. Junk, the Hague, 1964), pp. 194–206.

A. Rémond, in Ref. 8, pp. 157–193.

L. H. van der Tweel, in Ref. 8, pp. 287–305.

W. S. Battersby and I. H. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
[CrossRef] [PubMed]

R. M. Boynton, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, 1961), pp. 739–756.

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

M. Ikeda and R. M. Boynton, J. Opt. Soc. Am. 55, 560 (1965).
[CrossRef] [PubMed]

I. H. Wagman and W. S. Battersby, Am. J. Physiol. 197, 1237 (1959).

W. S. Battersby and I. H. Wagman, Am. J. Physiol. 203, 359 (1962).
[PubMed]

W. S. Battersby, R. E. Oesterreich, and J. F. Sturr, Am. J. Physiol. 206, 1181 (1964).
[PubMed]

W. S. Battersby and R. Jaffe, J. Exp. Psychol. 46, 154 (1953).
[CrossRef] [PubMed]

As has been noted repeatedly, photochemical processes could not obviously produce increments of threshold that occur whenthe test flash precedes the conditioning flash, because the latter has not yet impinged upon the retina. More important, according to photochemical theory, progressive exposure to light (either flickering or steady) should bleach more photolabile pigment with increases in time, leading to a decrease of sensitivity; in fact the opposite occurs.

R. Granit, Sensory Mechanisms of thle Retina (Oxford University Press, London, 1947), pp. 171–187.

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, 1955), pp. 62–78.

R. Jung, in Ref. 12, pp. 627–674.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Data obtained from observer WSB in experiment I; top family of curves generated by monocular mode of stimulation, bottom family by interocular mode. For both families, test-flash (Ft) threshold luminance (mL, logarithmically along the ordinate) is expressed as a function of its relative temporal placement (on the abscissa in percent of interval) between two conditioning flashes (Fc1 and Fc2) of varying time separations, as denoted as a parameter on each curve (in milliseconds). RT indicates the range of resting thresholds (no conditioning flashes presented), and NF indicates that Fc1 and Fc2 were not perceived as flickering at the interval marked. Fc1 only and Fc2 only denote the threshold changes obtained when only a single conditioning flash was utilized, and when Ft was presented following or preceding the beginning of Fc1 or Fc2 at various time delays. For details see text.

Fig. 2
Fig. 2

Data obtained from observer JFS in experiment I; presentation as in Fig. 1.

Fig. 3
Fig. 3

Data derived from results for observer WSB in experiment I; solid line is function generated by monocular mode of stimulation, dotted line by interocular mode. For both functions, the minimal rise of the logarithm of the threshold above the resting level (picked by inspection from data in Fig. 1) is plotted along the ordinate; the logarithm of the corresponding Fc1 to Fc2 frequency is plotted on the abscissa. For further details see text.

Fig. 4
Fig. 4

Data derived from results for observer JFS in experiment I; presentation as in Fig. 3.

Fig. 5
Fig. 5

Data obtained from observer WSB in experiment II; top curve generated by monocular mode of stimulation, bottom curve by interocular mode. For both curves, test-flash (Ft) threshold luminance (mL) (logarithmically along the ordinate) is expressed as a function of its temporal placement (on abscissa in milliseconds) in a train of five 31.2-cps conditioning flashes (Fc1Fc5). RT shows the range of resting-threshold data (no conditioning flashes presented). The two other horizontally dashed lines on each curve show increments of the logarithms of threshold luminance measured at the end of a single 24-msec conditioning flash of either peak (100-mL) or time averaged (15.5-mL) luminance. For details see text.

Fig. 6
Fig. 6

Data obtained from observer JFS in experiment II; presentation as in Fig. 5.

Tables (1)

Tables Icon

Table I Experiment I—Two conditioning flashes (Fc1, Fc2).