Abstract

Methods of determining the principal optical constants of biaxial and uniaxial crystals are presented, using either ellipsometric or reflectance measurements.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Lenham, Proc. Phys. Soc. (London) 82, 933 (1963).
    [Crossref]
  2. R. T. Jacobsen and M. Kerker, J. Opt. Soc. Am. 57, 751 (1967).
    [Crossref]
  3. A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 55, 1072 (1965).
    [Crossref]
  4. A. H. Lettington, in Proc. 1st Intern. Colloq. Opt. Prop. Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North–Holland Publ. Co., Amsterdam, 1966), p. 147.
  5. ∊ is used in preference to the complex refractive index n− ik[∊= (n− ik)2] in these equations since it leads in general to a more compact form of the equations.
  6. J. R. Beattie and G. K. T. Conn, Phil. Mag. 46, 231 (1955).
  7. See any standard text on numerical analysis, e.g., A. D. Booth, Numerical Methods (Butterworths Scientific Publications, Ltd.London, 1957).
  8. R. H. W. Graves and A. P. Lenham, J. Opt. Soc. Am. 58, 884 (1968).
    [Crossref]

1968 (1)

1967 (1)

1965 (1)

1963 (1)

A. P. Lenham, Proc. Phys. Soc. (London) 82, 933 (1963).
[Crossref]

1955 (1)

J. R. Beattie and G. K. T. Conn, Phil. Mag. 46, 231 (1955).

Beattie, J. R.

J. R. Beattie and G. K. T. Conn, Phil. Mag. 46, 231 (1955).

Booth, A. D.

See any standard text on numerical analysis, e.g., A. D. Booth, Numerical Methods (Butterworths Scientific Publications, Ltd.London, 1957).

Conn, G. K. T.

J. R. Beattie and G. K. T. Conn, Phil. Mag. 46, 231 (1955).

Graves, R. H. W.

Jacobsen, R. T.

Kerker, M.

Lenham, A. P.

Lettington, A. H.

A. H. Lettington, in Proc. 1st Intern. Colloq. Opt. Prop. Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North–Holland Publ. Co., Amsterdam, 1966), p. 147.

Treherne, D. M.

J. Opt. Soc. Am. (3)

Phil. Mag. (1)

J. R. Beattie and G. K. T. Conn, Phil. Mag. 46, 231 (1955).

Proc. Phys. Soc. (London) (1)

A. P. Lenham, Proc. Phys. Soc. (London) 82, 933 (1963).
[Crossref]

Other (3)

See any standard text on numerical analysis, e.g., A. D. Booth, Numerical Methods (Butterworths Scientific Publications, Ltd.London, 1957).

A. H. Lettington, in Proc. 1st Intern. Colloq. Opt. Prop. Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North–Holland Publ. Co., Amsterdam, 1966), p. 147.

∊ is used in preference to the complex refractive index n− ik[∊= (n− ik)2] in these equations since it leads in general to a more compact form of the equations.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Summary of techniques for the determination of the optical constants of anisotropic crystals. The range indicates the region for which the solution is both possible and of reasonable accuracy.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

r = ( z - sin 2 θ ) 1 2 - ( x z ) 1 2 cos θ ( z - sin 2 θ ) 1 2 + ( x z ) 1 2 cos θ
r = cos θ - ( y - sin 2 θ ) 1 2 cos θ + ( y - sin 2 θ ) 1 2 ,
ρ e i Δ = r r = [ γ z - ( x z ) 1 2 cos θ ] [ γ z + ( x z ) 1 2 cos θ ] [ cos θ + γ y ] [ cos θ - γ y ] ,
γ y , z = ( y , z - sin 2 θ ) 1 2 ,
1 + ρ e i Δ 1 - ρ e i Δ = cos θ [ γ z - γ y ( x z ) 1 2 ] ( x z ) 1 2 cos 2 θ - γ y γ z .
( x z ) 1 2 = ( cos θ + ϕ γ y ϕ cos θ + γ y ) γ z cos θ .
x = ( cos θ + ϕ γ y ϕ cos θ + γ y ) 2 ( z - sin 2 θ ) z cos 2 θ = f 1 ( y ) · f 2 ( z ) ,
a = f 1 ( b ) · f 2 ( c )
b = f 1 ( a ) · f 2 ( c )
c = f 1 ( a ) · f 2 ( b ) .
ϕ = ( - sin 2 θ ) 1 2 / sin θ tan θ .
r ( 1 - x 1 2 cos θ ) / ( 1 + x 1 2 cos θ )
r ( cos θ - y 1 2 ) / ( cos θ + y 1 2 ) .
a = f 1 ( b ) · f 2 ( b )
b = f 1 ( a ) · f 2 ( b ) .
b = f 1 ( a ) ± { [ f 1 ( a ) ] 2 - 4 f 1 ( a ) · cos 2 θ sin 2 θ } 1 2 2 cos 2 θ .
a = f 1 ( b ) · f 2 ( c )
b = f 1 ( a ) · f 2 ( c ) .
a · f 1 ( a ) = b · f 1 ( b ) .
r = ( z - sin 2 θ ) 1 2 - ( x z ) 1 2 cos θ ( z - sin 2 θ ) 1 2 + ( x z ) 1 2 cos θ
R θ = r 2 .
R θ = ( z - y ) 2 + ( z - y ) 2 ( z + y ) 2 + ( z + y ) 2 = f ( x , x , z , z ) .
L θ = f ( a , a , c , c ) ,
M θ = f ( b , b , c , c ) ,
N θ = f ( c , c , b , b ) ;
R θ = ( x - cos θ ) 2 + ( x - cos θ ) 2 ( x + cos θ ) 2 + ( x + cos θ ) 2 ,
( - sin 2 θ ) 1 2 = x - i x
= - i .
I θ 1 / I θ 2 = f ( x , z , θ 1 ) / f ( x , z , θ 2 )
I θ 3 / I θ 2 = f ( x , z , θ 3 ) / f ( x , z , θ 2 ) ,