Abstract

A general description is given of a long-neglected use for the piezo-optic or photoelastic effect (stress-induced birefringence). An acoustic vibration, such as a fundamental extensional mode in a bar or long thin plate, is set up in a block of isotropic transparent material, such as glass or fused silica; the vibration is sustained by a transducer. The resulting modulated birefringence can be used in a variety of ways, notably to produce a beam of alternately left- and right-circularly polarized light for circular-dichroism measurements. Strains of the order 10<sup>-5</sup> are required, considerably below the breakage point for most materials. Because advantage is taken of the high <i>Q</i> of the vibrational modes, typically 10<sup>3</sup> to 10<sup>4</sup>, very small transducer power is needed, usually less than 1 W. The literally enormous useful angular aperture, of the order 50° total cone angle, makes the device far superior to Pockels or Kerr cells for many applications. Reference is made to current practical realizations and to present and future uses of the device.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Jessop, in Encyclopedia of Physics, Vol. VI, S. Flügge, Ed. (Springer-Verlag, Berlin, 1958). This is a review and includes references to books on mechanical engineering applications.
  2. M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); 263, 139 (1966).
  3. A review of modern polarization devices is given by W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962). For the state of the art in electro-optic devices see R. S. Ploss, Opt. Spectry. 3, (1)63 (1969).
  4. A. Sommerfeld, Optics (Academic Press Inc., New York, 1964); Ch. IV.
  5. R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).
  6. K. Vedam and S. Ramaseshan, in Progress in Crystal Physics R. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n = rσ=(C0Y/n)σ=(n/2) × (p11-p12)σ, where Y is Young's modulus and σ is a uniaxial strain.
  7. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Co., Inc., New York, 1950); Ch. XV.
  8. L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

1969

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

1967

R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

1966

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); 263, 139 (1966).

Badoz, J.

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); 263, 139 (1966).

Billardon, M.

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); 263, 139 (1966).

Dixon, R. W.

R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

Downie, D.

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

Engstrom, H.

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

Grant, W. B.

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

Jessop, H. J.

H. J. Jessop, in Encyclopedia of Physics, Vol. VI, S. Flügge, Ed. (Springer-Verlag, Berlin, 1958). This is a review and includes references to books on mechanical engineering applications.

Mason, W. P.

W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Co., Inc., New York, 1950); Ch. XV.

Mollenauer, L. F.

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

Ramaseshan, S.

K. Vedam and S. Ramaseshan, in Progress in Crystal Physics R. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n = rσ=(C0Y/n)σ=(n/2) × (p11-p12)σ, where Y is Young's modulus and σ is a uniaxial strain.

Shurcliff, W. A.

A review of modern polarization devices is given by W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962). For the state of the art in electro-optic devices see R. S. Ploss, Opt. Spectry. 3, (1)63 (1969).

Sommerfeld, A.

A. Sommerfeld, Optics (Academic Press Inc., New York, 1964); Ch. IV.

Vedam, K.

K. Vedam and S. Ramaseshan, in Progress in Crystal Physics R. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n = rσ=(C0Y/n)σ=(n/2) × (p11-p12)σ, where Y is Young's modulus and σ is a uniaxial strain.

Other

H. J. Jessop, in Encyclopedia of Physics, Vol. VI, S. Flügge, Ed. (Springer-Verlag, Berlin, 1958). This is a review and includes references to books on mechanical engineering applications.

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); 263, 139 (1966).

A review of modern polarization devices is given by W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962). For the state of the art in electro-optic devices see R. S. Ploss, Opt. Spectry. 3, (1)63 (1969).

A. Sommerfeld, Optics (Academic Press Inc., New York, 1964); Ch. IV.

R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

K. Vedam and S. Ramaseshan, in Progress in Crystal Physics R. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n = rσ=(C0Y/n)σ=(n/2) × (p11-p12)σ, where Y is Young's modulus and σ is a uniaxial strain.

W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Co., Inc., New York, 1950); Ch. XV.

L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.