R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

[Crossref]

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); Compt. Rend. 263, 139 (1966).

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); Compt. Rend. 263, 139 (1966).

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); Compt. Rend. 263, 139 (1966).

R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

[Crossref]

H. J. Jessop, in Encyclopedia of Physics, Vol. VI, S. Flügge, Ed. (Springer-Verlag, Berlin, 1958). This is a review and includes references to books on mechanical engineering applications.

W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Co., Inc., New York, 1950); Ch. XV.

K. Vedam and S. Ramaseshan, in Progress in Crystal PhysicsR. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n= rσ= (C0Y/n)σ= (n/2) × (p11 − p12)σ, where Y is Young’s modulus and σ is a uniaxial strain.

A review of modern polarization devices is given by W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962). For the state of the art in electro-optic devices see R. S. Ploss, Opt. Spectry. 3,(1)63 (1969).

A. Sommerfeld, Optics (Academic Press Inc., New York, 1964); Ch. IV.

K. Vedam and S. Ramaseshan, in Progress in Crystal PhysicsR. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n= rσ= (C0Y/n)σ= (n/2) × (p11 − p12)σ, where Y is Young’s modulus and σ is a uniaxial strain.

M. Billardon and J. Badoz, Compt. Rend. 262, 1672 (1966); Compt. Rend. 263, 139 (1966).

R. W. Dixon, IEEE J. Quant. Electr., QE-3, 85 (1967).

[Crossref]

K. Vedam and S. Ramaseshan, in Progress in Crystal PhysicsR. S. Krishnan, Ed. (S. Viswanathan, Madras, India, 1958). Some photoelastic data are given in terms of the stress-optical constants qij, essentially the pij times elastic constants. Data for glasses and fused quartz are compiled in Landolt-Bornstein Tables, (Springer-Verlag, Berlin, 1962), Vol. II, Part 8, pp. 3–542; these are generally in terms of a stress-optical constant C0, related for practical purposes to constants we use by Δn/n= rσ= (C0Y/n)σ= (n/2) × (p11 − p12)σ, where Y is Young’s modulus and σ is a uniaxial strain.

W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Co., Inc., New York, 1950); Ch. XV.

A review of modern polarization devices is given by W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962). For the state of the art in electro-optic devices see R. S. Ploss, Opt. Spectry. 3,(1)63 (1969).

A. Sommerfeld, Optics (Academic Press Inc., New York, 1964); Ch. IV.

H. J. Jessop, in Encyclopedia of Physics, Vol. VI, S. Flügge, Ed. (Springer-Verlag, Berlin, 1958). This is a review and includes references to books on mechanical engineering applications.