Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Bube, Phys. Rev. 101, 1668 (1956).
    [Crossref]
  2. J. Kommandeur and W. G. Schneider, J. Chem. Phys. 28, 582 (1958).
    [Crossref]
  3. A. T. Vartanyan, Sov. Phys.—Dokl. 8, 292 (1963); Sov. Phys.—Dokl. 11, 525 (1966).
  4. B. Rosenberg, in Electrical Conductivity in Organic Solids (Wiley-Interscience, Inc., New York, 1961), p. 271.
  5. P. J. Hillson and E. Rideal, Proc. Roy. Soc. (London) 216, 458 (1953).
    [Crossref]
  6. F. C. Toy, Nature 121, 865 (1928).
  7. P. G. Aline, Phys. Rev. 105, 406 (1957).
    [Crossref]
  8. W. Coblentz and J. F. Eckford, Natl. Bur. Std. (U. S.) Sci. Papers 18, 489 (1922).
    [Crossref]
  9. G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
    [Crossref]

1963 (1)

A. T. Vartanyan, Sov. Phys.—Dokl. 8, 292 (1963); Sov. Phys.—Dokl. 11, 525 (1966).

1960 (1)

G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
[Crossref]

1958 (1)

J. Kommandeur and W. G. Schneider, J. Chem. Phys. 28, 582 (1958).
[Crossref]

1957 (1)

P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

1956 (1)

R. H. Bube, Phys. Rev. 101, 1668 (1956).
[Crossref]

1953 (1)

P. J. Hillson and E. Rideal, Proc. Roy. Soc. (London) 216, 458 (1953).
[Crossref]

1928 (1)

F. C. Toy, Nature 121, 865 (1928).

1922 (1)

W. Coblentz and J. F. Eckford, Natl. Bur. Std. (U. S.) Sci. Papers 18, 489 (1922).
[Crossref]

Aline, P. G.

P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

Bube, R. H.

R. H. Bube, Phys. Rev. 101, 1668 (1956).
[Crossref]

Calvin, M.

G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
[Crossref]

Coblentz, W.

W. Coblentz and J. F. Eckford, Natl. Bur. Std. (U. S.) Sci. Papers 18, 489 (1922).
[Crossref]

Eckford, J. F.

W. Coblentz and J. F. Eckford, Natl. Bur. Std. (U. S.) Sci. Papers 18, 489 (1922).
[Crossref]

Hillson, P. J.

P. J. Hillson and E. Rideal, Proc. Roy. Soc. (London) 216, 458 (1953).
[Crossref]

Kearns, D. R.

G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
[Crossref]

Kommandeur, J.

J. Kommandeur and W. G. Schneider, J. Chem. Phys. 28, 582 (1958).
[Crossref]

Rideal, E.

P. J. Hillson and E. Rideal, Proc. Roy. Soc. (London) 216, 458 (1953).
[Crossref]

Rosenberg, B.

B. Rosenberg, in Electrical Conductivity in Organic Solids (Wiley-Interscience, Inc., New York, 1961), p. 271.

Schneider, W. G.

J. Kommandeur and W. G. Schneider, J. Chem. Phys. 28, 582 (1958).
[Crossref]

Tollin, G.

G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
[Crossref]

Toy, F. C.

F. C. Toy, Nature 121, 865 (1928).

Vartanyan, A. T.

A. T. Vartanyan, Sov. Phys.—Dokl. 8, 292 (1963); Sov. Phys.—Dokl. 11, 525 (1966).

J. Chem. Phys. (2)

J. Kommandeur and W. G. Schneider, J. Chem. Phys. 28, 582 (1958).
[Crossref]

G. Tollin, D. R. Kearns, and M. Calvin, J. Chem. Phys. 32, 1013 (1960).
[Crossref]

Natl. Bur. Std. (U. S.) Sci. Papers (1)

W. Coblentz and J. F. Eckford, Natl. Bur. Std. (U. S.) Sci. Papers 18, 489 (1922).
[Crossref]

Nature (1)

F. C. Toy, Nature 121, 865 (1928).

Phys. Rev. (2)

P. G. Aline, Phys. Rev. 105, 406 (1957).
[Crossref]

R. H. Bube, Phys. Rev. 101, 1668 (1956).
[Crossref]

Proc. Roy. Soc. (London) (1)

P. J. Hillson and E. Rideal, Proc. Roy. Soc. (London) 216, 458 (1953).
[Crossref]

Sov. Phys.—Dokl. (1)

A. T. Vartanyan, Sov. Phys.—Dokl. 8, 292 (1963); Sov. Phys.—Dokl. 11, 525 (1966).

Other (1)

B. Rosenberg, in Electrical Conductivity in Organic Solids (Wiley-Interscience, Inc., New York, 1961), p. 271.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of absorptance with xerographic response. The solid line represents absorptance; the dotted line is xerographic sensitivity for light incident on negatively charged surface; the dashed line is calculated absorptance of layer (l% of thickness) contiguous to rear surface.

Fig. 2
Fig. 2

Absorptance of layer contiguous to rear surface (no reflectance). Thickness of each layer, as percent of film thickness, is shown on each curve. Transmittance of film for which each curve attains maximum is shown.

Fig. 3
Fig. 3

Transmittance at which absorptance at back of film is maximum. It is assumed that there is no reflection by the surface of incidence. The curve parameter is reflectance from the back surface. The limit for zero active-layer thickness is 1/e (36.8%).