Abstract

Radiative lifetimes have been measured for 17 excited states of Xe i and 6 excited states of Xe ii. Collision cross sections have been determined for 16 of the Xe i states. A discussion is given of the contribution to the population of these states due to cascade and collisional processes. Lifetimes for 46 of the excited states of the xenon atom have been calculated and compared with the measured values, where applicable, in order to test the validity of the assumption, sometimes used in the discussion of noble-gas lasers, that the energy-level structure is adequately described in terms of j-l coupling. For completeness, the lifetimes of 24 excited states of the xenon ion have been calculated, and excellent agreement obtained between measured and calculated values. Virtually no previously measured or calculated values for these parameters are available in the literature. The experimental apparatus has been tested by measuring the lifetime of the 51S, 31P, 31D, 41D, 43S, and 33D excited states of helium and comparing them with previously measured values. Four of these lifetimes have been measured with very high precision.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bennett, Appl. Opt. Suppl. 2, 3 (1965).
  2. C. E. Moore, Natl. Bur. Std. (U. S.), Circ. 467, Vol. III (U. S. Gov’t. Printing Office, Washington, D. C.1958).
  3. G. Racah, Phys. Rev. 61, 537 (1942).
  4. I. P. Zapesochnyi and P. V. Feltsan, Opt. Spectrosc. 20, 291 (1962).
  5. W. R. Bennett, Appl. Opt. Suppl. 1, 24 (1962).
    [Crossref]
  6. W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).
  7. W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
    [Crossref]
  8. W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
    [Crossref]
  9. H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
    [Crossref]
  10. D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).
  11. W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954).
  12. R. I. Rudko and C. L. Tang, Appl. Phys. Letters 9, 41 (1966).
    [Crossref]
  13. S. H. Koozekanani, IEEE J. Quant. Elec. 2, 770 (1966).
    [Crossref]
  14. E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
    [Crossref]
  15. C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1963).
  16. B. W. Shore and D. H. Menzel, Astrophys. J. Suppl. No.  106, 187 (1965).
    [Crossref]
  17. H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
    [Crossref]

1966 (2)

R. I. Rudko and C. L. Tang, Appl. Phys. Letters 9, 41 (1966).
[Crossref]

S. H. Koozekanani, IEEE J. Quant. Elec. 2, 770 (1966).
[Crossref]

1965 (4)

B. W. Shore and D. H. Menzel, Astrophys. J. Suppl. No.  106, 187 (1965).
[Crossref]

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

W. R. Bennett, Appl. Opt. Suppl. 2, 3 (1965).

W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).

1964 (3)

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
[Crossref]

1963 (1)

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

1962 (2)

I. P. Zapesochnyi and P. V. Feltsan, Opt. Spectrosc. 20, 291 (1962).

W. R. Bennett, Appl. Opt. Suppl. 1, 24 (1962).
[Crossref]

1949 (1)

D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).

1942 (1)

G. Racah, Phys. Rev. 61, 537 (1942).

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1963).

Bates, D. R.

D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).

Bennett, W. R.

W. R. Bennett, Appl. Opt. Suppl. 2, 3 (1965).

W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).

W. R. Bennett, Appl. Opt. Suppl. 1, 24 (1962).
[Crossref]

Bridges, W. B.

E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
[Crossref]

Damgaard, A.

D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).

Faust, W. L.

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

Feltsan, P. V.

I. P. Zapesochnyi and P. V. Feltsan, Opt. Spectrosc. 20, 291 (1962).

Garrett, C. G. B.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

Gordon, E. I.

E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
[Crossref]

Heitler, W.

W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954).

Horrigan, F. A.

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

Kindlmann, P. J.

W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).

Koozekanani, S. H.

S. H. Koozekanani, IEEE J. Quant. Elec. 2, 770 (1966).
[Crossref]

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

Koster, G. F.

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

Labuda, E. F.

E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
[Crossref]

McFarlane, R. A.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Menzel, D. H.

B. W. Shore and D. H. Menzel, Astrophys. J. Suppl. No.  106, 187 (1965).
[Crossref]

Mercer, G. N.

W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).

Moore, C. E.

C. E. Moore, Natl. Bur. Std. (U. S.), Circ. 467, Vol. III (U. S. Gov’t. Printing Office, Washington, D. C.1958).

Patel, C. K. N.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

Racah, G.

G. Racah, Phys. Rev. 61, 537 (1942).

Rudko, R. I.

R. I. Rudko and C. L. Tang, Appl. Phys. Letters 9, 41 (1966).
[Crossref]

Shore, B. W.

B. W. Shore and D. H. Menzel, Astrophys. J. Suppl. No.  106, 187 (1965).
[Crossref]

Statz, H.

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

Tang, C. L.

R. I. Rudko and C. L. Tang, Appl. Phys. Letters 9, 41 (1966).
[Crossref]

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

Zapesochnyi, I. P.

I. P. Zapesochnyi and P. V. Feltsan, Opt. Spectrosc. 20, 291 (1962).

Appl. Opt. Suppl. (3)

W. R. Bennett, Appl. Opt. Suppl. 2, 3 (1965).

W. R. Bennett, Appl. Opt. Suppl. 1, 24 (1962).
[Crossref]

W. R. Bennett, P. J. Kindlmann, and G. N. Mercer, Appl. Opt. Suppl. 2, 34 (1965).

Appl. Phys. Letters (2)

R. I. Rudko and C. L. Tang, Appl. Phys. Letters 9, 41 (1966).
[Crossref]

E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Letters 4, 178 (1964).
[Crossref]

Astrophys. J. Suppl. (1)

B. W. Shore and D. H. Menzel, Astrophys. J. Suppl. No.  106, 187 (1965).
[Crossref]

IEEE J. Quant. Elec. (1)

S. H. Koozekanani, IEEE J. Quant. Elec. 2, 770 (1966).
[Crossref]

J. Appl. Phys. (3)

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys. 36, 2278 (1965).
[Crossref]

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Opt. Spectrosc. (1)

I. P. Zapesochnyi and P. V. Feltsan, Opt. Spectrosc. 20, 291 (1962).

Phil. Trans. Roy. Soc. London (1)

D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).

Phys. Rev. (2)

G. Racah, Phys. Rev. 61, 537 (1942).

W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Phys. Rev. 133, A1476 (1964).
[Crossref]

Other (3)

C. E. Moore, Natl. Bur. Std. (U. S.), Circ. 467, Vol. III (U. S. Gov’t. Printing Office, Washington, D. C.1958).

W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954).

C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Decay of level 6p3/2,2. Transition 4734 Å. Conditions: Excitation 15 V. Pulse 50 nsec. Pressure 200 mtorr.

Fig. 2
Fig. 2

Decay of level 7p5/2,3. Transition 4671 Å. Conditions: Excitation 12.5 V. Pulse 50 nsec. Pressure 200 mtorr.

Tables (5)

Tables Icon

Table I A comparison of measured helium lifetimes with those due to other workers.

Tables Icon

Table II Measured lifetimes and collision cross sections for the excited states of Xe I.

Tables Icon

Table III Calculated lifetimes of the excited states of Xe i (nsecs).

Tables Icon

Table IV Measured lifetimes for the excited states of Xe ii.

Tables Icon

Table V Calculated lifetimes of the excited states of Xe ii (nsecs).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

e + 5 p 6 5 p 5 n d + e
e + 5 p 6 5 p 5 n s + e .
A eff = A + n v Q ,
v = [ 4 k T ( m e + m v ) / m e m g π ] 1 2 ,
v = ( 8 k T / m π ) 1 2 .
Δ J c = 0 ,             Δ K = 0 , ± 1 ,             Δ J = 0 , ± 1 ,
J = 0 J = 0.
( l 1 1 l 2 0 0 0 )
A = 2.02 × 10 18 ( 2 J m + 1 ) λ 3 S m n sec - 1 ,
S m n = M m , M n γ m J m M m P γ n J n M n 2 ,
S m n = S ( L ) S ( M ) σ 2 ;