Abstract

The wavelength dependence of both the total back-scatter cross section σT and the depolarized back-scatter cross section σD for rough metallic surfaces of known statistical characteristics has been determined experimentally by comparing data at 0.63-, 3.39- and 10.6 μ wavelengths. The rms height from the mean, h, and the mean scale size l of the two surfaces used in the experiment are: h≈1 μ, l≈10 μ; h≈7 μ, l≈50 μ. At or near normal incidence, results show that the total cross section per beam area σT/A0 is independent of wavelength λ, provided that h/λ is greater than approximately 14. When h/λ14, σT/A0 increases rapidly with decreasing h/λ. Previous microwave data suggest that the metallic surface reflects nearly as a perfectly smooth surface without significant scattering losses when h/λ≲1/40. At or near normal incidence the ratio of σD to σT varies as (h/l)4λ/4πδ for all values of h/λ studied, where δ is the skin depth of the metallic surface. For incident angles ψ in the range from 20° to 80° and h/λ>14, both σT/A0 and σD/A0 vary as λn where n increases with increasing ψ. n has a value of 0.40 (±0.2) at 4ψ=20° and 0.8 (±0.2) at 80°.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription