Abstract

Wavelength-discrimination functions were compared for three different stages in the processing of visual signals. Responses at an early retinal stage were recorded by use of a contact-lens electrode attached to the cornea of the eye. Occipital scalp electrodes were used to record potentials evoked at the cortical level. Finally, the observers made psychophysical judgments of the corresponding differences of hue. Electrical responses were evoked by rapid shifts from one wavelength to another within a set of vertical stripes that made up the visual field. In favorable regions of the spectrum (near 495 and 595 nm), small (4 to 7 nm) shifts of wavelength evoked measurable occipital potentials and produced noticeable changes of the perceived hue. Much larger differences (20 to 25 nm) were required, however, to elicit retinal responses. This suggests that an enhancement of wavelength-discriminating signals must take place at some stage between the bipolar layer of the retina and the striate area of the cortex.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
    [CrossRef]
  2. E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.
  3. J. C. Armington, J. Opt. Soc. Am. 57, 838 (1967).
    [CrossRef] [PubMed]
  4. C. E. Sternheim and L. A. Riggs, Vision Res. 8, 25 (1968).
    [CrossRef]
  5. L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
    [CrossRef]
  6. W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
    [CrossRef]
  7. G. Wald, Science 101, 653 (1945).
    [CrossRef] [PubMed]
  8. C. R. Cavonius, Psychon. Sci. 2, 185 (1965).
  9. J. B. Siegfried, “Spectral sensitivity of the human visual system as measured from both evoked cortical potentials and psychophysical responses,” Ph.D. dissertation, Brown University (1967).
  10. B. R. Wooten, “Photopic and scotopic contributions to the human visual evoked cortical potential,” Ph.D. dissertation, Brown University (1968).
  11. R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
    [CrossRef]
  12. G. Westheimer, Vision Res. 6, 669 (1966).
    [CrossRef] [PubMed]
  13. J. O. Ramsay, J. Opt. Soc. Am. 58, 19 (1968).
    [CrossRef] [PubMed]
  14. Amy M. L. Schick, “Electrical action potentials of the eye in response to two-colored stimulus patterns with constant wavelength separation.” Master’s dissertation, Brown University (1964).

1968 (3)

C. E. Sternheim and L. A. Riggs, Vision Res. 8, 25 (1968).
[CrossRef]

R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[CrossRef]

J. O. Ramsay, J. Opt. Soc. Am. 58, 19 (1968).
[CrossRef] [PubMed]

1967 (1)

1966 (3)

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[CrossRef]

G. Westheimer, Vision Res. 6, 669 (1966).
[CrossRef] [PubMed]

E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.

1965 (1)

C. R. Cavonius, Psychon. Sci. 2, 185 (1965).

1964 (1)

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
[CrossRef]

1945 (1)

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

1934 (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[CrossRef]

Armington, J. C.

Cavonius, C. R.

C. R. Cavonius, Psychon. Sci. 2, 185 (1965).

De Voe, R. G.

R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[CrossRef]

Johnson, E. P.

E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[CrossRef]

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
[CrossRef]

Pitt, F. H. G.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[CrossRef]

Ramsay, J. O.

Riggs, L. A.

C. E. Sternheim and L. A. Riggs, Vision Res. 8, 25 (1968).
[CrossRef]

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[CrossRef]

E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
[CrossRef]

Ripps, H.

R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[CrossRef]

Schick, Amy M. L.

E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, J. Opt. Soc. Am. 56, 1621 (1966).
[CrossRef]

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
[CrossRef]

Amy M. L. Schick, “Electrical action potentials of the eye in response to two-colored stimulus patterns with constant wavelength separation.” Master’s dissertation, Brown University (1964).

Siegfried, J. B.

J. B. Siegfried, “Spectral sensitivity of the human visual system as measured from both evoked cortical potentials and psychophysical responses,” Ph.D. dissertation, Brown University (1967).

Sternheim, C. E.

C. E. Sternheim and L. A. Riggs, Vision Res. 8, 25 (1968).
[CrossRef]

Vaughan, H. G.

R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[CrossRef]

Wald, G.

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, Vision Res. 6, 669 (1966).
[CrossRef] [PubMed]

Wooten, B. R.

B. R. Wooten, “Photopic and scotopic contributions to the human visual evoked cortical potential,” Ph.D. dissertation, Brown University (1968).

Wright, W. D.

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[CrossRef]

Clinical Electroretinography (1)

E. P. Johnson, L. A. Riggs, and Amy M. L. Schick, in Clinical Electroretinography, Suppl. to Vision Res. (1966), p. 75.

J. Opt. Soc. Am. (3)

Proc. Phys. Soc. (London) (1)

W. D. Wright and F. H. G. Pitt, Proc. Phys. Soc. (London) 46, 459 (1934).
[CrossRef]

Psychon. Sci. (1)

C. R. Cavonius, Psychon. Sci. 2, 185 (1965).

Science (2)

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

L. A. Riggs, E. P. Johnson, and Amy M. L. Schick, Science 144, 567 (1964).
[CrossRef]

Vision Res. (3)

C. E. Sternheim and L. A. Riggs, Vision Res. 8, 25 (1968).
[CrossRef]

R. G. De Voe, H. Ripps, and H. G. Vaughan, Vision Res. 8, 135 (1968).
[CrossRef]

G. Westheimer, Vision Res. 6, 669 (1966).
[CrossRef] [PubMed]

Other (3)

Amy M. L. Schick, “Electrical action potentials of the eye in response to two-colored stimulus patterns with constant wavelength separation.” Master’s dissertation, Brown University (1964).

J. B. Siegfried, “Spectral sensitivity of the human visual system as measured from both evoked cortical potentials and psychophysical responses,” Ph.D. dissertation, Brown University (1967).

B. R. Wooten, “Photopic and scotopic contributions to the human visual evoked cortical potential,” Ph.D. dissertation, Brown University (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral sensitivity data. Ordinate is log reciprocal energy of monochromatic test light to produce a criterion level of brightness at each wavelength. + + + Brightness matching data, and ○ ○ ○ flickcr photometry data for subject R. × × × Brightness matching data, and ● ● ● flicker photometry data for subject S. Curves drawn through data are foveal cone-sensitivity functions of Wald.7

Fig. 2
Fig. 2

Curves showing relative amplitudes of retinal (○ ○ ○) and occipital (+ + +) response-potential waves for subject R (right) and subject S (left). Reference wavelength, indicated by arrow below each curve, is paired with each of the designated wavelengths to produce the corresponding response potential.

Fig. 3
Fig. 3

Samples of occipital response-potential waves produced by 12-, 8-, 4-, and 0-nm shifts of wavelength. Wavelength shift occurs at time S. Horizontal line at top indicates the time interval used for measurement of major component of response-potential wave.

Fig. 4
Fig. 4

Curves showing changes of wavelength (Δλ) to meet various criteria of detectability throughout the spectrum. CS, CR: cortical response-potential data for subjects S and R. PR and PS: psychophysical data on hue shift for subjects R and S. DW: Hue discrimination curve of Wright and Pitt.6 E: Curve derived from retinal response-potential data of Riggs et al.5

Fig. 5
Fig. 5

Curves showing sample measurements of cortical (C) and retinal (E) response-potential waves evoked by alternation between two wavelengths differing by the amount shown on the abscissa.