Abstract

A shift of the peak of the Stiles–Crawford effect suggests that saccades shear the retina. This action appears to lead to an increase of the retinal activity of a real-light background. Thus, thresholds following a saccade are raised the most for test wavelengths which are most similar to the adapting-field wavelength. If the adapting field is eliminated, saccadic suppression is reduced. Saccades also affect the customary rises of thresholds found near the onset and extinction of the adapting field. This effect is as if the retinal feedback loop underlying adaptation is disrupted by the saccade.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Latour, Vision Res. 2, 261 (1962).
    [CrossRef]
  2. B. L. Zuber and L. Stark, Exptl. Neurol. 16, 65 (1966).
    [CrossRef]
  3. F. C. Volkmann, A. M. L. Schick, and L. A. Riggs, J. Opt. Soc. Am. 58, 562 (1968).
    [CrossRef] [PubMed]
  4. P. L. Latour, “Cortical Control of Eye Movement,” thesis, Institute for Perception RVO-TNO, Soesterberg, The Netherlands (1966).
  5. H.-L. Teuber, in Handbook of Physiology, Vol. III, Neurophysiology, J. Field, Ed. (American Physiological Society, Washington, D. C., 1960), p. 1595.
  6. E. B. Holt, Harvard Psychol. Stud. I, 3 (1903).
  7. W. Richards, J. Opt. Soc. Am. 58, 1159 (1968).
    [CrossRef] [PubMed]
  8. Note also the phosphene of quick eye motion reported by B. Nebel, Arch. Ophthalmol. 58, 236 (1957).
    [CrossRef]
  9. L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).
  10. B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
  11. H. B. Barlow and J. M. B. Sparrock, Science 144, 1309 (1964).
    [CrossRef] [PubMed]
  12. W. A. H. Rushton, Proc. Roy. Soc. (London) B162, 20 (1965).
  13. J. E. Dowling, Science 155, 273 (1967).
    [CrossRef] [PubMed]
  14. R. M. Chapman, Vision Res. 2, 89 (1962); R. A. Cone, J. Gen. Physiol. 47, 1089 (1964).
    [CrossRef]
  15. Note also the characteristic secondary decrease of the threshold near 180 to 200 msec equivalent to 50 or 70 msec prior to the beginning of the return saccade. This decrease has also been reported by others.1–4 We propose that the peak and valley preceding the eye movement reflect neural disinhibition or the Broca–Sulzer phenomenon, whereas those decreases that occur after a single eye movement are due to retinal (or vitreous) oscillations.
  16. H. D. Baker, J. Opt. Soc. Am. 39, 172 (1949); J. Opt. Soc. Am. 53, 98 (1963).
    [CrossRef] [PubMed]
  17. R. M. Boynton, Arch. Ophthalmol. 60, 800 (1958).
    [CrossRef]
  18. F. Ratliff, H. K. Hartline, and W. H. Miller, J. Opt. Soc. Am. 53, 110 (1963).
    [CrossRef] [PubMed]
  19. G. Westheimer, J. Physiol. (London) 190, 139 (1967).

1968 (2)

1967 (2)

G. Westheimer, J. Physiol. (London) 190, 139 (1967).

J. E. Dowling, Science 155, 273 (1967).
[CrossRef] [PubMed]

1966 (1)

B. L. Zuber and L. Stark, Exptl. Neurol. 16, 65 (1966).
[CrossRef]

1965 (1)

W. A. H. Rushton, Proc. Roy. Soc. (London) B162, 20 (1965).

1964 (1)

H. B. Barlow and J. M. B. Sparrock, Science 144, 1309 (1964).
[CrossRef] [PubMed]

1963 (1)

1962 (3)

L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).

R. M. Chapman, Vision Res. 2, 89 (1962); R. A. Cone, J. Gen. Physiol. 47, 1089 (1964).
[CrossRef]

P. L. Latour, Vision Res. 2, 261 (1962).
[CrossRef]

1958 (1)

R. M. Boynton, Arch. Ophthalmol. 60, 800 (1958).
[CrossRef]

1957 (1)

Note also the phosphene of quick eye motion reported by B. Nebel, Arch. Ophthalmol. 58, 236 (1957).
[CrossRef]

1949 (1)

1947 (1)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

1903 (1)

E. B. Holt, Harvard Psychol. Stud. I, 3 (1903).

Baker, H. D.

Barlow, H. B.

H. B. Barlow and J. M. B. Sparrock, Science 144, 1309 (1964).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, Arch. Ophthalmol. 60, 800 (1958).
[CrossRef]

Chapman, R. M.

R. M. Chapman, Vision Res. 2, 89 (1962); R. A. Cone, J. Gen. Physiol. 47, 1089 (1964).
[CrossRef]

Crawford, B. H.

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

Dowling, J. E.

J. E. Dowling, Science 155, 273 (1967).
[CrossRef] [PubMed]

Hartline, H. K.

Holt, E. B.

E. B. Holt, Harvard Psychol. Stud. I, 3 (1903).

Latour, P. L.

P. L. Latour, Vision Res. 2, 261 (1962).
[CrossRef]

P. L. Latour, “Cortical Control of Eye Movement,” thesis, Institute for Perception RVO-TNO, Soesterberg, The Netherlands (1966).

Miller, W. H.

Nebel, B.

Note also the phosphene of quick eye motion reported by B. Nebel, Arch. Ophthalmol. 58, 236 (1957).
[CrossRef]

Ratliff, F.

Richards, W.

Riggs, L. A.

Rushton, W. A. H.

W. A. H. Rushton, Proc. Roy. Soc. (London) B162, 20 (1965).

Schick, A. M. L.

Sparrock, J. M. B.

H. B. Barlow and J. M. B. Sparrock, Science 144, 1309 (1964).
[CrossRef] [PubMed]

Stark, L.

B. L. Zuber and L. Stark, Exptl. Neurol. 16, 65 (1966).
[CrossRef]

L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).

Teuber, H.-L.

H.-L. Teuber, in Handbook of Physiology, Vol. III, Neurophysiology, J. Field, Ed. (American Physiological Society, Washington, D. C., 1960), p. 1595.

Volkmann, F. C.

Vossius, G.

L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).

Westheimer, G.

G. Westheimer, J. Physiol. (London) 190, 139 (1967).

Young, L. R.

L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).

Zuber, B. L.

B. L. Zuber and L. Stark, Exptl. Neurol. 16, 65 (1966).
[CrossRef]

Arch. Ophthalmol. (2)

Note also the phosphene of quick eye motion reported by B. Nebel, Arch. Ophthalmol. 58, 236 (1957).
[CrossRef]

R. M. Boynton, Arch. Ophthalmol. 60, 800 (1958).
[CrossRef]

Exptl. Neurol. (1)

B. L. Zuber and L. Stark, Exptl. Neurol. 16, 65 (1966).
[CrossRef]

Harvard Psychol. Stud. (1)

E. B. Holt, Harvard Psychol. Stud. I, 3 (1903).

IRE Trans. (1)

L. Stark, G. Vossius, and L. R. Young, IRE Trans. HFE-3, 52 (1962).

J. Opt. Soc. Am. (4)

J. Physiol. (London) (1)

G. Westheimer, J. Physiol. (London) 190, 139 (1967).

Proc. Roy. Soc. (London) (2)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

W. A. H. Rushton, Proc. Roy. Soc. (London) B162, 20 (1965).

Science (2)

J. E. Dowling, Science 155, 273 (1967).
[CrossRef] [PubMed]

H. B. Barlow and J. M. B. Sparrock, Science 144, 1309 (1964).
[CrossRef] [PubMed]

Vision Res. (2)

R. M. Chapman, Vision Res. 2, 89 (1962); R. A. Cone, J. Gen. Physiol. 47, 1089 (1964).
[CrossRef]

P. L. Latour, Vision Res. 2, 261 (1962).
[CrossRef]

Other (3)

Note also the characteristic secondary decrease of the threshold near 180 to 200 msec equivalent to 50 or 70 msec prior to the beginning of the return saccade. This decrease has also been reported by others.1–4 We propose that the peak and valley preceding the eye movement reflect neural disinhibition or the Broca–Sulzer phenomenon, whereas those decreases that occur after a single eye movement are due to retinal (or vitreous) oscillations.

P. L. Latour, “Cortical Control of Eye Movement,” thesis, Institute for Perception RVO-TNO, Soesterberg, The Netherlands (1966).

H.-L. Teuber, in Handbook of Physiology, Vol. III, Neurophysiology, J. Field, Ed. (American Physiological Society, Washington, D. C., 1960), p. 1595.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the apparatus: B, background field; CW, circular wedge; E, eye; F, Wratten filter; GG, ground glass; HS, horizontal slit; IR, infrared filter; L, lens; M, monochromator; P, prism; PM, photomultiplier; PT, phototransistor; S, tungsten source; SH, shutter; TF, test-field stop; VM, vernier micrometer; X, xenon arc.

Fig. 2
Fig. 2

Stimulus configuration used for most of the experiments.

Fig. 3
Fig. 3

Averages of 25 double saccades made by the two observers. Upper trace: WR; Lower trace: WW. Note the absence of any consistent overshooting once the eye reaches the target area, and the subsequent stability of the eye for 150 or 200 msec prior to the beginning of the return saccade.

Fig. 4
Fig. 4

The change of the Stiles–Crawford effect following a saccade. The circles show the customary attenuation versus eccentric entry; the crosses show the new sensitivities 40 msec following the beginning of a 5° saccade. Note the slight temporal displacement of the curve, as well as the reduced sensitivity. This shift of the curve is also shown more clearly by the declining ratios between the crosses and circles, plotted below with triangles. (Observer WW.)

Fig. 5
Fig. 5

Thresholds obtained for a 1° foveal test flash for steady fixation (solid circles) and for fixation 40 msec following the beginning of a 5° saccade (crosses). As the background luminance is decreased, the effect of the preceding saccade on the threshold is reduced. However, the change of the logarithm of the equivalent background luminance following the saccade appears to be independent of the luminance level. (Observer WR.)

Fig. 6
Fig. 6

Same as Figure 5. (Observer WW.)

Fig. 7
Fig. 7

Change of thresholds associated with a 5° saccade for two test-field wavelengths. Circles: 460 nm; crosses: 580 nm. Time scale is with respect to the beginning of the first saccade, indicated by the left-hand arrow at the top of the figure. The right-hand arrow indicates the approximate beginning of the return movement. (Observer WW.)

Fig. 8
Fig. 8

Saccadic-suppression effect for two subjects as a function of wavelength of the test stimulus. Crosses: WR; circles: WW. Background color temperature is 2500 K.

Fig. 9
Fig. 9

Saccadic suppression for WR as a function of wavelength for two differently colored adapting fields. Triangles: dominant wavelength of background is 471 nm; squares: background dominant wavelength is 645 nm.

Fig. 10
Fig. 10

Comparison of thresholds obtained with steady fixation (circles) and 40 msec following a 4.5° saccade (crosses). Test-field wavelength: 580 nm; background wavelength: 645 nm. The background was on for 1.0 sec every 3.0 sec.