Abstract

Approximate first-order trigonal crystal-field-split energy levels are derived and fitted theoretically for the Sm3+-in-CaF2 (Type I) 6H7/2, 6H9/2, and 6H11/2 states of the ground multiplet involved in fluorescence. Crystal-field theory and the Stevens method are employed in this derivation. The resulting energy deviation between the first-order theoretical levels and the empirically derived levels is within 42 cm−1 for 14 of the 15 levels involved under the assumption of a constancy of the six trigonal crystal-field parameters. Tables are given of the resulting approximate values of the crystal-field parameters, level energies, and eigenfunctions.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription