Abstract

The electron-excitation, phase-shift method of Lawrence has been applied to the determination of radiative lifetimes of Ar ii transitions. The measured levels, which are primarily those of 4p 2S, 2P, 4D, were studied using transitions in the region from 1900–4500 Å. The Ar ii lifetimes measured ranged from 1.2 to 10.6 nsec and involve a number of levels in which configuration interaction is present.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Lawrence, J. Quant. Spectry Radiative Transfer 5, 359 (1965).
    [Crossref]
  2. G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
    [Crossref]
  3. B. D. Savage and G. M. Lawrence, Astrophys. J. 146, 940 (1966).
    [Crossref]
  4. J. E. Hesser, J. Chem. Phys. 48, 2518 (1968).
    [Crossref]
  5. J. E. Hesser, Phys. Rev. 174, 68 (1968).
    [Crossref]
  6. D. Robinson and P. D. Lenn, Appl. Opt. 6, 983 (1967).
    [Crossref] [PubMed]
  7. D. R. Bates and Damgaard, Phil. Trans. Roy. Soc. (London) A242, 101 (1949).
  8. The 2891 Å line was selected initially for use as a possible phase reference because of its small phase shifts at both low and high modulation frequencies, which was a good indication that the line was cascade free and short lived; the detailed comparison with Ne ii 1908–1935 Å confirmed these preliminary findings.
  9. J. Z. Klose, (1968, private communication).
  10. K. W. Meissner, Z. Physik 39, 172 (1926).
    [Crossref]
  11. T. L. de Bruin, Z. Physik 61, 307 (1930).
    [Crossref]
  12. C. E. Moore, Contributions from Princeton University Observatory No. 20 (1945).
  13. C. E. Moore, Natl. Bur. Std. (U. S.) Circular 488 (U. S. Gov’t. Printing Office, Washington, D. C., 1950), Sec. I.
  14. These lifetimes represent the average of lifetimes derived from 2891 and 2979 Å, whose individual τ’s were found to be 4.0 and 4.1 nsec, respectively.
  15. H. N. Olsen, J. Quant. Spectry Radiative Transfer 3, 305 (1963).
    [Crossref]
  16. C. H. Popenoe and J. B. Shumaker, J. Res. Natl. Bur. Std. (U. S.) 69A, 495 (1963).
    [Crossref]
  17. R. H. Garstang, Mon. Not. Roy. Astron. Soc. 114, 118 (1954).
  18. W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
    [Crossref]
  19. E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935), p. 375.

1968 (2)

J. E. Hesser, J. Chem. Phys. 48, 2518 (1968).
[Crossref]

J. E. Hesser, Phys. Rev. 174, 68 (1968).
[Crossref]

1967 (1)

1966 (2)

G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
[Crossref]

B. D. Savage and G. M. Lawrence, Astrophys. J. 146, 940 (1966).
[Crossref]

1965 (1)

G. M. Lawrence, J. Quant. Spectry Radiative Transfer 5, 359 (1965).
[Crossref]

1964 (1)

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

1963 (2)

H. N. Olsen, J. Quant. Spectry Radiative Transfer 3, 305 (1963).
[Crossref]

C. H. Popenoe and J. B. Shumaker, J. Res. Natl. Bur. Std. (U. S.) 69A, 495 (1963).
[Crossref]

1954 (1)

R. H. Garstang, Mon. Not. Roy. Astron. Soc. 114, 118 (1954).

1949 (1)

D. R. Bates and Damgaard, Phil. Trans. Roy. Soc. (London) A242, 101 (1949).

1945 (1)

C. E. Moore, Contributions from Princeton University Observatory No. 20 (1945).

1930 (1)

T. L. de Bruin, Z. Physik 61, 307 (1930).
[Crossref]

1926 (1)

K. W. Meissner, Z. Physik 39, 172 (1926).
[Crossref]

Bates, D. R.

D. R. Bates and Damgaard, Phil. Trans. Roy. Soc. (London) A242, 101 (1949).

Bennett, W. R.

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

Condon, E. U.

E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935), p. 375.

Damgaard,

D. R. Bates and Damgaard, Phil. Trans. Roy. Soc. (London) A242, 101 (1949).

de Bruin, T. L.

T. L. de Bruin, Z. Physik 61, 307 (1930).
[Crossref]

Garstang, R. H.

R. H. Garstang, Mon. Not. Roy. Astron. Soc. 114, 118 (1954).

Hesser, J. E.

J. E. Hesser, J. Chem. Phys. 48, 2518 (1968).
[Crossref]

J. E. Hesser, Phys. Rev. 174, 68 (1968).
[Crossref]

Kindlmann, P. J.

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

Klose, J. Z.

J. Z. Klose, (1968, private communication).

Lawrence, G. M.

G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
[Crossref]

B. D. Savage and G. M. Lawrence, Astrophys. J. 146, 940 (1966).
[Crossref]

G. M. Lawrence, J. Quant. Spectry Radiative Transfer 5, 359 (1965).
[Crossref]

Lenn, P. D.

Meissner, K. W.

K. W. Meissner, Z. Physik 39, 172 (1926).
[Crossref]

Mercer, G. N.

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

Moore, C. E.

C. E. Moore, Contributions from Princeton University Observatory No. 20 (1945).

C. E. Moore, Natl. Bur. Std. (U. S.) Circular 488 (U. S. Gov’t. Printing Office, Washington, D. C., 1950), Sec. I.

Olsen, H. N.

H. N. Olsen, J. Quant. Spectry Radiative Transfer 3, 305 (1963).
[Crossref]

Popenoe, C. H.

C. H. Popenoe and J. B. Shumaker, J. Res. Natl. Bur. Std. (U. S.) 69A, 495 (1963).
[Crossref]

Robinson, D.

Savage, B. D.

G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
[Crossref]

B. D. Savage and G. M. Lawrence, Astrophys. J. 146, 940 (1966).
[Crossref]

Shortley, G. H.

E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935), p. 375.

Shumaker, J. B.

C. H. Popenoe and J. B. Shumaker, J. Res. Natl. Bur. Std. (U. S.) 69A, 495 (1963).
[Crossref]

Sunderland, J.

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Letters (1)

W. R. Bennett, P. J. Kindlmann, G. N. Mercer, and J. Sunderland, Appl. Phys. Letters 5, 158 (1964).
[Crossref]

Astrophys. J. (1)

B. D. Savage and G. M. Lawrence, Astrophys. J. 146, 940 (1966).
[Crossref]

Contributions from Princeton University Observatory No. 20 (1)

C. E. Moore, Contributions from Princeton University Observatory No. 20 (1945).

J. Chem. Phys. (1)

J. E. Hesser, J. Chem. Phys. 48, 2518 (1968).
[Crossref]

J. Quant. Spectry Radiative Transfer (2)

G. M. Lawrence, J. Quant. Spectry Radiative Transfer 5, 359 (1965).
[Crossref]

H. N. Olsen, J. Quant. Spectry Radiative Transfer 3, 305 (1963).
[Crossref]

J. Res. Natl. Bur. Std. (U. S.) (1)

C. H. Popenoe and J. B. Shumaker, J. Res. Natl. Bur. Std. (U. S.) 69A, 495 (1963).
[Crossref]

Mon. Not. Roy. Astron. Soc. (1)

R. H. Garstang, Mon. Not. Roy. Astron. Soc. 114, 118 (1954).

Phil. Trans. Roy. Soc. (London) (1)

D. R. Bates and Damgaard, Phil. Trans. Roy. Soc. (London) A242, 101 (1949).

Phys. Rev. (2)

G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
[Crossref]

J. E. Hesser, Phys. Rev. 174, 68 (1968).
[Crossref]

Z. Physik (2)

K. W. Meissner, Z. Physik 39, 172 (1926).
[Crossref]

T. L. de Bruin, Z. Physik 61, 307 (1930).
[Crossref]

Other (5)

C. E. Moore, Natl. Bur. Std. (U. S.) Circular 488 (U. S. Gov’t. Printing Office, Washington, D. C., 1950), Sec. I.

These lifetimes represent the average of lifetimes derived from 2891 and 2979 Å, whose individual τ’s were found to be 4.0 and 4.1 nsec, respectively.

E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935), p. 375.

The 2891 Å line was selected initially for use as a possible phase reference because of its small phase shifts at both low and high modulation frequencies, which was a good indication that the line was cascade free and short lived; the detailed comparison with Ne ii 1908–1935 Å confirmed these preliminary findings.

J. Z. Klose, (1968, private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Emission spectrum of argon gas taken at 0.54 Mc-sec modulation frequency with about 3 μHg of argon in the excitation region, using 225-V electrons. The 0.5-m monochromator was operated with about an 8-Å bandpass. Lines whose absolute phase shifts were measured in this work are designated by their wavelengths.

Fig. 2
Fig. 2

Intensity (arbitrary units) vs accelerating potential for one Ar i and one Ar ii line (4511 and 2891 Å, respectively); the Ar ii intensity curve was normalized so that its maximum, at 106 V, equalled the maximum at 47 V of the Ar i intensity curve. It is clear from this figure that stages of ionization may be separated in this manner, thereby giving a greater degree of freedom from which to choose transitions for phase measurements than would be allowed by the bandpass of the monochromator alone.

Fig. 3
Fig. 3

Simplified energy-level diagram containing the upper states investigated here as well as some possible cascading states. The insert shows details of the 4p′ configuration with its anomalously large doublet separation of the 2P0 term relative to the 2D0 and 2F0 terms.

Fig. 4
Fig. 4

On the right is an example of the phase-vs-frequency diagram of a cascade-free transition, Ar ii (2979 Å) ( D 1 ) 4 p P 2 0 1 2 ( P 3 ) 4 s P 2 1 2. The solid line was calculated from Eq. (1) using a lifetime of 4.11 nsec. The error bars on the individual phase measurements represent the mean errors in the dispersion of individual phase measurements. On the left is an example of a cascade-complicated phase shift vs frequency curve, Ar ii (2420 Å) ( P 3 ) 6 s P 2 0 1 2 ( P 3 ) 4 s P 2 1 2. The curve consisting of longer dashes represents ϕ(f) for an exponential decay of 2.3 nsec, while the curve of shorter dashes shows the additional phase shift due to radiative cascading with a nominal T = 21 nsec and β = 0.25; the sum of these two curves yields the solid curve which fits the observed data points well.

Tables (2)

Tables Icon

Table I Ar ii radiative lifetimes.

Tables Icon

Table II Comparison of transition probabilities for Ar ii transition data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ = ω - 1 tan ϕ ,