Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kozma, J. Opt. Soc. Am. 56, 428 (1966).
    [CrossRef]
  2. A. A. Friesem and J. S. Zelenka, Appl. Opt. 6, 1755 (1967).
    [CrossRef] [PubMed]
  3. J. W. Goodman and G. R. Knight, J. Opt. Soc. Am. 58, 1276 (1968).
    [CrossRef]
  4. O. Bryngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 1325 (1968).
    [CrossRef]
  5. C. E. K. Mees, The Theory of the Photographic Process (The Macmillan Book Co., New York, 1954), rev. ed., p. 162ff.
  6. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), 2nd ed., p. 375ff.
  7. F. E. Terman, Electronic and Radio Engineering (McGraw-Hill Book Co., New York, 1955), 4th ed., p. 326.

1968 (2)

1967 (1)

1966 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), 2nd ed., p. 375ff.

Bryngdahl, O.

Friesem, A. A.

Goodman, J. W.

Knight, G. R.

Kozma, A.

Lohmann, A.

Mees, C. E. K.

C. E. K. Mees, The Theory of the Photographic Process (The Macmillan Book Co., New York, 1954), rev. ed., p. 162ff.

Terman, F. E.

F. E. Terman, Electronic and Radio Engineering (McGraw-Hill Book Co., New York, 1955), 4th ed., p. 326.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), 2nd ed., p. 375ff.

Zelenka, J. S.

Appl. Opt. (1)

J. Opt. Soc. Am. (3)

Other (3)

C. E. K. Mees, The Theory of the Photographic Process (The Macmillan Book Co., New York, 1954), rev. ed., p. 162ff.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), 2nd ed., p. 375ff.

F. E. Terman, Electronic and Radio Engineering (McGraw-Hill Book Co., New York, 1955), 4th ed., p. 326.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Wavefront recording of a point object. S, monochromatic point source; H, photographic plate.

Fig. 2
Fig. 2

Amplitude transmittance vs irradiance characteristics, and the five-point analysis.

Fig. 3
Fig. 3

Oblique-wavefront reconstruction of a nonlinear hologram. U. monochromatic plane wave; S′, first-order virtual image; H, hologram; S, first-order real image.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( A R ) 2 + B 2 + 2 A B R cos ( k ρ 2 2 R + ϕ ) ,
I Q = ( A / R ) 2 + B 2 .
T a ( ϱ ; k ) = a 0 2 + n = 1 a n cos n k 2 R ρ 2 ,
a n = 2 λ R 0 λ R T a ( ϱ ; k ) cos n k 2 R ρ 2 d ρ 2 ,             for n = 0 , 1 , 2 , .
T a ( ϱ ; k ) = T 0 + n = 1 T n ( ϱ ; k ) ,
T 0 = a 0 / 2 ,
T n ( ϱ ; k ) = a n cos ( n k / 2 R ) ρ 2 ,             for n = 1 , 2 , .
f n = R / n ,             for n = 1 , 2 , .
E ( σ ; k ) = S T a ( ϱ ; k ) exp ( i k x sin θ ) E l + ( σ - ϱ ; k ) d x d y ,
E l + ( ϱ ; k ) = - i λ l exp [ i k ( l + γ - z + ρ 2 2 l ) ] .
E ( σ n ; k ) = - i a n 2 exp ( i k R n ) { 1 2 exp [ i ( π 2 - k R 2 n sin 2 θ ) ] × exp [ i n k 2 R ( σ n + R n sin θ ) 2 ] + λ R n exp ( i n k 2 R σ n 2 ) δ ( α n - R n sin θ , β n ) } ,             for n = 1 , 2 , ,
% nonlinearity = ( n = 2 a n 2 ) 1 2 / a 1 × 100 % .
a 0 2 = T max + T min 6 + T α + T β 3 a 1 = T max - T min 3 + T α - T β 3 a 2 = T max + T min 4 - T Q 2 a 3 = T max - T min 6 - T α - T β 3
a 4 = T max - T min 12 - T α + T β 3 + T Q 2 .