Abstract

A filter based on an unequal-arm Michelson interferometer is described that will attenuate a strong spectral line by a factor of 100 or more but transmit without reduction a weaker but more interesting line separated by a few hundred MHz from the strong line. The factors limiting the extinction ratio of the filter are considered and a practical instrument that gives results in good agreement with the theory is described.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
    [CrossRef]
  2. G. B. Benedek and D. S. Cannell, Bull. Am. Phys. Soc. 13, 182 (1968).
  3. S. H. Chen and N. Polonsky, Phys. Rev. Letters 20, 909 (1968).
    [CrossRef]
  4. N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
    [CrossRef]
  5. See, for example, M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1959).
  6. See Ref. 5, p. 330.

1968 (3)

G. B. Benedek and D. S. Cannell, Bull. Am. Phys. Soc. 13, 182 (1968).

S. H. Chen and N. Polonsky, Phys. Rev. Letters 20, 909 (1968).
[CrossRef]

N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
[CrossRef]

1967 (1)

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
[CrossRef]

Benedek, G. B.

G. B. Benedek and D. S. Cannell, Bull. Am. Phys. Soc. 13, 182 (1968).

Born, M.

See, for example, M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1959).

Cannell, D. S.

G. B. Benedek and D. S. Cannell, Bull. Am. Phys. Soc. 13, 182 (1968).

Chen, S. H.

S. H. Chen and N. Polonsky, Phys. Rev. Letters 20, 909 (1968).
[CrossRef]

Cummins, H. Z.

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
[CrossRef]

Ford, N. C.

N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
[CrossRef]

Gammon, R. W.

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
[CrossRef]

Langley, K. H.

N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
[CrossRef]

Polonsky, N.

S. H. Chen and N. Polonsky, Phys. Rev. Letters 20, 909 (1968).
[CrossRef]

Puglielli, V. G.

N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
[CrossRef]

Swinney, H. L.

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
[CrossRef]

Wolf, E.

See, for example, M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1959).

Bull. Am. Phys. Soc. (1)

G. B. Benedek and D. S. Cannell, Bull. Am. Phys. Soc. 13, 182 (1968).

Phys. Rev. Letters (3)

S. H. Chen and N. Polonsky, Phys. Rev. Letters 20, 909 (1968).
[CrossRef]

N. C. Ford, K. H. Langley, and V. G. Puglielli, Phys. Rev. Letters 21, 9 (1968).
[CrossRef]

R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Letters 19, 1467 (1967).
[CrossRef]

Other (2)

See, for example, M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1959).

See Ref. 5, p. 330.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical arrangement of the combined Michelson and Fabry–Perot interferometers.

Fig. 2
Fig. 2

Brillouin spectra of CO2 at a temperature 0.25°C above the critical point. The Rayleigh component, shown at reduced gain on the right, is 1660 times as intense as the Brillouin component. The Fabry–Perot interferometer has a free spectral range of 1970 MHz and a finesse of 40.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 cos 2 ( δ / 2 ) ,
Δ L = λ 2 / ( 2 Δ λ ) = ( ν / Δ ν ) ( λ / 2 ) .
E = I 0 / I min ,
I min = I = I 0 ( π 2 / λ 2 ) t 2 .
E = ( 3 / π 2 ) m 2 .
E = ( 3 λ 2 ) / [ π 2 d 2 ( Δ n ) 2 ] .
t 2 = 4 [ n 2 + ( 2 n 2 - 1 ) 1 2 ] ( δ z ) 2 ,
t 2 = 4 [ n 2 - ( 2 n 2 - 1 ) 1 2 ] ( δ z ) 2 .
E = 3 π 2 [ 2 m 2 + n 2 + ( 2 n 2 - 1 ) 1 2 r 2 + n 2 - ( 2 n 2 - 1 ) 1 2 s 2 ] - 1 .
E = ( 3 / π 2 ) ( 2 / m 2 + 4.12 / r 2 + 0.38 / s 2 ) - 1 .
Δ L ( α ) - Δ L ( 0 ) = - Δ L ( 0 ) ( 1 - cos α ) - Δ L ( 0 ) ( α 2 / 2 ) .
t 2 = ( α 0 4 / 48 ) [ Δ L ( 0 ) ] 2 ,
I 0 / I min = ( 48 / π 2 ) [ λ / α 0 2 Δ L ] 2 .
I ( ω ) = ( Γ / π ) [ ( ω - ω 0 ) 2 + Γ 2 ] - 1 .
I p ( ω M , ω F ) = 0 I ( ω ) T M ( ω , ω M ) T F ( ω , ω F ) d ω
1 2 [ 1 + cos ( ω M - ω 0 ) exp ( - Γ Δ L / c ) ] .