Abstract

Experimental absorptance data are given for atmospheres of pure ammonia and for mixtures of ammonia and nitrogen at wavelengths between 20 and 35 μ. The wavelength interval is subdivided into five regions and the total absorptance is tabulated as a function of ammonia pressure and nitrogen pressure for each region. The average absorptance for each region is plotted as a function of the parameter U = WP*, in which W is the ammonia concentration and P* is an effective pressure. This effective pressure is the sum of the total pressure and the ammonia partial pressure multiplied by a self-broadening factor. A single absorptance function fits each region, indicating that the absorption is in the strong line region for the gas pressures used. This absorptance function does not agree with the strong-line limit of either the Goody or Elsasser models of band absorptance.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. France and D. Williams, J. Opt. Soc. Am. 56, 70 (1966).
    [Crossref]
  2. T. Dunham, in The Atmospheres of the Earth and Planets, G. P. Kuiper, Ed. (Univ. Chicago Press, 1952).
  3. H. Spinrad, Appl. Opt. 3, 181 (1964).
    [Crossref]
  4. T. Owen and T. E. Walsh, Nature 208, 476 (1965).
    [Crossref]
  5. C. H. Palmer, J. Opt. Soc. Am. 47, 367 (1957).
    [Crossref]
  6. F. R. Stauffer and T. E. Walsh, J. Opt. Soc. Am. 56, 401 (1966).
    [Crossref]
  7. M. Czerny and A. F. Turner, Z. Physik 61, 792 (1930).
    [Crossref]
  8. C. H. Palmer, J. Opt. Soc. Am. 50, 1232 (1960).
    [Crossref]
  9. W. S. Benedict, J. Opt. Soc. Am. 47, 1056 (1957).
  10. R. M. Goody, Atmospheric Radiation (Oxford University Press, 1964), Vol. 1, p. 128.
  11. G. N. Plass, J. Opt. Soc. Am. 48, 690 (1958).
    [Crossref]
  12. W. M. Elsasser, Phys. Rev. 54, 126 (1938).
    [Crossref]
  13. R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
    [Crossref]
  14. G. N. Plass, J. Opt. Soc. Am. 50, 868 (1960).
    [Crossref]

1966 (2)

1965 (1)

T. Owen and T. E. Walsh, Nature 208, 476 (1965).
[Crossref]

1964 (1)

1960 (2)

1958 (1)

1957 (2)

W. S. Benedict, J. Opt. Soc. Am. 47, 1056 (1957).

C. H. Palmer, J. Opt. Soc. Am. 47, 367 (1957).
[Crossref]

1952 (1)

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[Crossref]

1938 (1)

W. M. Elsasser, Phys. Rev. 54, 126 (1938).
[Crossref]

1930 (1)

M. Czerny and A. F. Turner, Z. Physik 61, 792 (1930).
[Crossref]

Benedict, W. S.

W. S. Benedict, J. Opt. Soc. Am. 47, 1056 (1957).

Czerny, M.

M. Czerny and A. F. Turner, Z. Physik 61, 792 (1930).
[Crossref]

Dunham, T.

T. Dunham, in The Atmospheres of the Earth and Planets, G. P. Kuiper, Ed. (Univ. Chicago Press, 1952).

Elsasser, W. M.

W. M. Elsasser, Phys. Rev. 54, 126 (1938).
[Crossref]

France, W. L.

Goody, R. M.

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[Crossref]

R. M. Goody, Atmospheric Radiation (Oxford University Press, 1964), Vol. 1, p. 128.

Owen, T.

T. Owen and T. E. Walsh, Nature 208, 476 (1965).
[Crossref]

Palmer, C. H.

Plass, G. N.

Spinrad, H.

Stauffer, F. R.

Turner, A. F.

M. Czerny and A. F. Turner, Z. Physik 61, 792 (1930).
[Crossref]

Walsh, T. E.

Williams, D.

Appl. Opt. (1)

J. Opt. Soc. Am. (7)

Nature (1)

T. Owen and T. E. Walsh, Nature 208, 476 (1965).
[Crossref]

Phys. Rev. (1)

W. M. Elsasser, Phys. Rev. 54, 126 (1938).
[Crossref]

Quart. J. Roy. Meteorol. Soc. (1)

R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952).
[Crossref]

Z. Physik (1)

M. Czerny and A. F. Turner, Z. Physik 61, 792 (1930).
[Crossref]

Other (2)

R. M. Goody, Atmospheric Radiation (Oxford University Press, 1964), Vol. 1, p. 128.

T. Dunham, in The Atmospheres of the Earth and Planets, G. P. Kuiper, Ed. (Univ. Chicago Press, 1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Spectra for 0.5 cm Hg of ammonia. The upper curve is for zero cm Hg of nitrogen, the middle for 20 cm Hg of nitrogen, and the lower for 60 cm Hg of nitrogen. The five wavelength intervals selected for the absorptance functions of Figs. 610 are indicated at the top of the figure.

Fig. 2
Fig. 2

Spectra for 1.0 cm Hg of ammonia.

Fig. 3
Fig. 3

Spectra for 2.0 cm Hg of ammonia.

Fig. 4
Fig. 4

Spectra for 3.27 cm Hg of ammonia.

Fig. 5
Fig. 5

Spectra for 5.0 cm Hg of ammonia.

Fig. 6
Fig. 6

Average absorptance, 301–319 cm−1. ○, 0.5 cm Hg NH3; ●, 1.0 cm Hg NH3; △, 20 cm Hg NH3; □, 3.27 cm Hg NH3; ×, 5.0 cm Hg NH3.

Fig. 7
Fig. 7

Average absorptance 319–337 cm−1. Same code as Fig. 6.

Fig. 8
Fig. 8

Average absorptance 337–365 cm−1. Same code as Fig. 6.

Fig. 9
Fig. 9

Average absorptance 365–406 cm−1. Same code as Fig. 6.

Fig. 10
Fig. 10

Average absorptance 406–452 cm−1. Same code as Fig. 6.

Fig. 11
Fig. 11

Superposition of all data by translating the abscissae of Figs. 610 to make the 50% absorptance points coincide.

Fig. 12
Fig. 12

Relative absorptance for the five spectral regions.

Fig. 13
Fig. 13

All data points from Fig. 11 having P* = 10±10 cm Hg. The solid curve is the absorptance function used in Figs. 611, and corresponds to β = 0.6 in the Goody model. The long-dashed curve is the strong line limit of the Goody model, β≤0.1. The short-dashed curve is the strong line limit of the Elsasser model. All three curves have been drawn to pass through the data at 〈A〉 = 0.5.

Fig. 14
Fig. 14

All data points from Fig. 11 having P* = 75±15 cm Hg. The solid curve is the absorptance function used in Figs. 611, and corresponds to β = 0.6 in the Goody model. The dashed curve corresponds to β = 4.5 in the Goody model. Both curves have been drawn to pass through the data at 〈A〉 = 0.5.

Tables (2)

Tables Icon

Table I Total absorptance for each region tabulated against ammonia and nitrogen pressure in 196-m path length.

Tables Icon

Table II Average absorptance for each region tabulated against the parameter U.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ν A ( ν ) d ν = A ( ν ) Δ ν ,
W = p l ,
P * = N p + P ,
N = [ ( p 2 p N ) / ( p 1 2 - p 2 2 ) ] - 1.