Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The application of internal time-varying perturbation to the problem of laser-mode control and stabilization has been reviewed by S. E. Harris, in the joint issues of Appl. Opt. 5, 1639 (1966)Proc. IEEE 54, 1401 (1966). See also papers referred to therein.
    [CrossRef] [PubMed]
  2. M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Letters 9, 287 (1966).
    [CrossRef]
  3. R. Rosenberg, private communication.
  4. C. G. B. Garrett and M. A. Duguay, Appl. Phys. Letters 9, 374 (1966).
    [CrossRef]
  5. M. A. Duguay and J. W. Hansen, Appl. Phys. Letters 14, 14 (1969).
    [CrossRef]
  6. M. A. Duguay, private communication.

1969 (1)

M. A. Duguay and J. W. Hansen, Appl. Phys. Letters 14, 14 (1969).
[CrossRef]

1966 (3)

Duguay, M. A.

M. A. Duguay and J. W. Hansen, Appl. Phys. Letters 14, 14 (1969).
[CrossRef]

C. G. B. Garrett and M. A. Duguay, Appl. Phys. Letters 9, 374 (1966).
[CrossRef]

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Letters 9, 287 (1966).
[CrossRef]

M. A. Duguay, private communication.

Garrett, C. G. B.

C. G. B. Garrett and M. A. Duguay, Appl. Phys. Letters 9, 374 (1966).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, Appl. Phys. Letters 14, 14 (1969).
[CrossRef]

Hargrove, L. E.

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Letters 9, 287 (1966).
[CrossRef]

Harris, S. E.

Jefferts, K. B.

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Letters 9, 287 (1966).
[CrossRef]

Rosenberg, R.

R. Rosenberg, private communication.

Appl. Opt. (1)

Appl. Phys. Letters (3)

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Letters 9, 287 (1966).
[CrossRef]

C. G. B. Garrett and M. A. Duguay, Appl. Phys. Letters 9, 374 (1966).
[CrossRef]

M. A. Duguay and J. W. Hansen, Appl. Phys. Letters 14, 14 (1969).
[CrossRef]

Other (2)

M. A. Duguay, private communication.

R. Rosenberg, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

Diagram representing a sinusoidal applied electric field EF with frequency ω/2 phased such that the optical pulses OP go through the electro-optic medium during successive zero points of the applied field.

F. 2
F. 2

Comparison of an original pulse (z = 0), a pulse for z = zmax =2a = 10, and a pulse for z = 5, all for a = 5 and P =0.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = A ( t ) A * ( t ) ,
A ( t ) = m = + A m [ i ( Ω 0 + m ω ) t ]
A m = exp ( m 2 / a 2 ) .
Φ = ( P + 1 2 ) ω ,
h = 1 2 A ( t ) exp { i z sin [ ( P + 1 2 ) ω t ] } + 1 2 A ( t ) exp { i z sin [ ( P + 1 2 ) ω t ] } = cos [ z sin [ ( P + 1 2 ) ω t ] A ( t ) ,
H = cos 2 [ z sin ( P + 1 2 ) ω t ] A ( t ) A * ( t ) = 1 2 { 1 + cos [ 2 z sin ( P + 1 2 ) ω t ] } I ( t ) .
z Φ = z ( P + 1 2 ) ω .
z max = a / ( P + 1 2 ) .
2 z max sin ( P + 1 2 ) ( π / 2 a ) = π
z max = π / [ 2 sin ( P + 1 2 ) ( π / 2 a ) ] .
z max = a / ( P + 1 2 ) ,
R = 1 2 [ 1 + cos ( 2 z sin P ω t ) ] I ( t )
Φ = P ω t ,
z max = a / P
z max = π / [ 2 sin ( P π / 2 a ) ] .