Abstract

The problem considered is one in which a thin, nonscattering photosensitive film, either free standing or coated on a substrate, is placed in contact with a document and exposed through the photosensitive film. Energy-balance equations are written at each boundary and an expression for the energy absorbed in the film is obtained. The expression is dependent on the reflectance and absorptance of the film and the reflectance of the document. The energy-absorption equation is interpreted with the use of the characteristic curve of the photosensitive material and a figure of merit called the reflex index is defined. A means for evaluating the optical parameters and measurement of the reflex index is discussed.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kosar in Ber. Intern. Kongr. Reprog., 1st Congress, Cologne, 1963 (1964), p. 217–220.
  2. R. L. Mooney, J. Opt. Soc. Am. 35, 574 (1945).
    [Crossref]
  3. C. E. Leberknight and Benjamin Lustman, J. Opt. Soc. Am. 29, 59 (1939).
    [Crossref]
  4. P. Kubelka, J. Opt. Soc. Am. 44, 330 (1954).
    [Crossref]
  5. F. R. Clapper and J. A. C. Yule, J. Opt. Soc. Am. 43, 600 (1953).
    [Crossref]
  6. F. Kottler, J. Opt. Soc. Am. 50, 483 (1960).
    [Crossref]
  7. D. B. Judd, J. Res. Natl. Bur. Std. (U. S.) 29, 329 (1942).
    [Crossref]
  8. N. T. Notley, Phot. Sci. Engr. 11, 2 (1967).

1967 (1)

N. T. Notley, Phot. Sci. Engr. 11, 2 (1967).

1960 (1)

1954 (1)

1953 (1)

1945 (1)

1942 (1)

D. B. Judd, J. Res. Natl. Bur. Std. (U. S.) 29, 329 (1942).
[Crossref]

1939 (1)

Clapper, F. R.

Judd, D. B.

D. B. Judd, J. Res. Natl. Bur. Std. (U. S.) 29, 329 (1942).
[Crossref]

Kosar, J.

J. Kosar in Ber. Intern. Kongr. Reprog., 1st Congress, Cologne, 1963 (1964), p. 217–220.

Kottler, F.

Kubelka, P.

Leberknight, C. E.

Lustman, Benjamin

Mooney, R. L.

Notley, N. T.

N. T. Notley, Phot. Sci. Engr. 11, 2 (1967).

Yule, J. A. C.

J. Opt. Soc. Am. (5)

J. Res. Natl. Bur. Std. (U. S.) (1)

D. B. Judd, J. Res. Natl. Bur. Std. (U. S.) 29, 329 (1942).
[Crossref]

Phot. Sci. Engr. (1)

N. T. Notley, Phot. Sci. Engr. 11, 2 (1967).

Other (1)

J. Kosar in Ber. Intern. Kongr. Reprog., 1st Congress, Cologne, 1963 (1964), p. 217–220.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

F. 1
F. 1

Schematic illustration of reflex exposure: D, document; S, diffuse light source; F, photosensitive film.

F. 2
F. 2

Energy-balance model for reflex exposure of free-standing film: D, document; F, photosensitive film.

F. 3
F. 3

Equivalent multiple-reflection model: D, document; F, photosensitive film.

F. 4
F. 4

Relative absorbed energy as a function of relative incident exposure, for various absorptances. Rp = 0.095, Ri = 0.610.

F. 5
F. 5

Interpretation of absorbed energy vs incident-exposure curve in conjunction with general-relationship curve. Rp = 0.095, Ri = 0.610, A = 0.20.

F. 6
F. 6

Energy-balance model for reflex exposure of photosensitive film on transparent substrate: D, document; P, photosensitive layer; S, transparent substrate.

F. 7
F. 7

Energy-balance model for reflex exposure of free-standing photosensitive film with collimated light.

F. 8
F. 8

Reflex index as a function of film absorptance for collimated and diffuse exposures. Upper curve is for collimated exposure, lower curve is for diffuse exposure. ⋯ Ri = 0. 61, Rp = 0.95, R ¯ i = 0.95, and R ¯ p = 0.95.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

E 1 + = E 0 + ( 1 R p ) + E 1 R i .
E 2 + = E 1 + ( 1 A )
E 3 + = E 2 + ( 1 R i ) + E 3 R p
E 3 = E 3 + R 1
E 2 = E 3 ( 1 R p ) + E 2 + R i
E 1 = E 2 ( 1 A ) ,
E a 1 = ( E 1 + + E 2 ) A .
E a 1 = E 0 A ( 1 R p ) { 1 + R i ( 1 A ) + [ ( 1 A ) ( 1 R i ) ( 1 R p ) R 1 ( 1 R 1 R p ) ] / 1 R i 2 ( 1 A ) 2 [ R 1 R i ( 1 A ) 2 ( 1 R i ) ( 1 R p ) ( 1 R 1 R p ) ] } .
B 1 = ( 1 A ) ( 1 R i ) ( 1 R p ) R 1 1 R 1 R p ,
E a 1 = E 0 A ( 1 R p ) [ 1 + R i ( 1 A ) + B 1 ] [ 1 R i 2 ( 1 A ) 2 R i ( 1 A ) + B 1 ] .
E a 1 E a 2 = Δ E a = E 0 A ( 1 R p ) { [ 1 + R i ( 1 A ) + B 1 1 R i 2 ( 1 A ) 2 R i ( 1 A ) + B 1 ] [ 1 + R i ( 1 A ) + B 2 1 R i 2 ( 1 A ) 2 R i ( 1 A ) + B 2 ] } ,
B 2 = ( 1 A ) ( 1 R i ) ( 1 R p ) R 2 1 R 2 R p .
E a = K E 0 ,
E a 2 = K 2 E 0 ,
E a 1 = K 1 E 0 ,
E a 1 = K 2 E 0 ,
E 0 = E a 1 K 2 = K 1 K 2 E 0 .
E 0 E 0 = ( K 1 K 2 E 0 E 0 ) = E 0 ( K 1 K 2 1 ) .
E a 1 E a 2 E a 2 = K 1 E 0 K 2 E 0 K 2 E 0 = ( K 1 K 2 1 ) ,
E 0 E 0 = E 0 ( E a 1 E a 2 ) ( E a 2 ) = E 0 Δ E a E a 2 .
E 0 = E 0 = E 0 I .
E 1 + = E 0 + ( 1 R e ) + E 1 R d
E 2 + = E 1 + ( 1 R c ) + E 2 R b
E 3 + = E 2 + ( 1 A )
E 4 + = E 3 + ( 1 R i ) + E 4 R p
E 4 = E 4 + R 1
E 3 = E 4 ( 1 R p ) + E 3 + R i
E 2 = E 3 ( 1 A )
E 1 = E 2 ( 1 R b ) + E 1 + R c .
E a = A ( E 2 + + E 3 ) .
E a = E 0 A ( 1 R e ) ( 1 R c ) [ 1 + R c R d 1 R c R d + ( 1 A ) ( 1 R i ) ( 1 R p ) R 1 ( 1 R 1 R p ) + ( 1 A ) R i ] / 1 ( 1 A ) 2 [ ( 1 R c ) R d ( 1 R b ) + R b ( 1 R c R d ) ] [ ( 1 R i ) ( 1 R p ) R 1 + R i ( 1 R 1 R p ) ] .
E a I = E 0 A ( 1 R ¯ p ) 1 ( 1 A ) R ¯ i .
E 3 + = E 0 ( 1 R ¯ i ) ( 1 R ¯ p ) ( 1 A ) 1 R ¯ i 2 ( 1 A ) 2 .
E a II = E 0 ( 1 A ) ( 1 R ¯ i ) ( 1 R ¯ p ) A R 1 [ R i ( 1 + A ) + 1 1 R 1 R p ] / [ 1 R ¯ i 2 ( 1 A ) 2 ] [ 1 R i 2 ( 1 A ) 2 R 1 R i ( 1 R i ) ( 1 R p ) ( 1 A ) 2 1 R i R p ] .
E a = E a I + E a II = E 0 A ( 1 R ¯ p ) 1 ( 1 A ) 2 R ¯ i 2 { 1 + ( 1 A ) R ¯ i + ( 1 R ¯ i ) ( 1 A ) ( 1 R p ) R 1 1 R 1 R p [ R i ( 1 A ) + 1 ] / 1 R i 2 ( 1 A ) 2 [ R 1 R i ( 1 R i ) ( 1 R p ) ( 1 A ) 2 1 R 1 R p ] } .
T = E 3 + E 0 = ( 1 R p ) ( 1 R i ) ( 1 A ) 1 ( 1 A ) 2 R i 2 .
R = E 0 E 0 + = R p + ( 1 R p ) ( 1 A ) ( 1 R i ) [ ( 1 A ) ( 1 R i ) ( 1 R p ) R 1 1 R 1 R p + ( 1 A ) R i ] / 1 ( 1 A ) R i [ ( 1 A ) ( 1 R i ) ( 1 R p ) R 1 1 R 1 R p + ( 1 A ) R i ] .