Abstract

The oscillator strengths of the 1S01P1 (1165 Å) and the 1S03P1 (1236 Å) resonance transitions in krypton and the 1S01P1 (1296 Å) resonance transition in xenon were determined by the method of total absorption. A 2-m absorbing path and pressures in the range of 0.006–0.064 torr were used. The results were

Kr: 1S01P1 (1165 Å)f = 0.193±0.009 (39 determinations)
Kr: 1S03P1 (1236 Å)f = 0.187±0.006 (49 determinations)
Xe: 1S01P1 (1296 Å)f = 0.194±0.005 (35 determinations).

© 1969 Optical Society of America

Full Article  |  PDF Article

Corrections

P. M. Griffin and J. W. Hutcherson, "Errata," J. Opt. Soc. Am. 61, 136-136 (1971)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-61-1-136

References

  • View by:
  • |
  • |
  • |

  1. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961); reprinted, pp. 130–133.
  2. R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913).
  3. C. Gregory, Phys. Rev. 61, 465 (1942).
  4. R. E. Huffman, J. C. Larrabee, and D. Chambers, Appl. Opt. 4, 1145 (1965).
  5. D. C. Baird, Experimentation: An Introduction to Measurement Theory and Experiment Design (Prentice–Hall, Inc., Englewood Cliffs, N. J., 1962).
  6. J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949).
  7. J. Koch and E. Rasmussen, Phys. Rev. 77, 722 (1950).
  8. A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).
  9. P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 5, 503 (1965).
  10. P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 6, 823 (1966).
  11. R. Turner, Phys. Rev. 140, A426 (1965).
  12. J. Geiger, Z. Physik 177, 138 (1964).
  13. G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 20, 283 (1966).
  14. G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 22, 284 (1967).
  15. J. M. Vaughan, Phys. Rev. 166, 13 (1968).
  16. D. K. Anderson, Phys. Rev. 137, A21 (1965).
  17. J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).
  18. J. W. Cooper, Phys. Rev. 128, 681 (1962).
  19. P. F. Gruzdev, Opt. Spectrosc. 22, 170 (1967).
  20. A. Burgess and M. I. Seaton, Monthly Not. Roy. Astron. Soc. 120, 121 (1960).

1968 (1)

J. M. Vaughan, Phys. Rev. 166, 13 (1968).

1967 (2)

P. F. Gruzdev, Opt. Spectrosc. 22, 170 (1967).

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 22, 284 (1967).

1966 (3)

J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 20, 283 (1966).

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 6, 823 (1966).

1965 (4)

R. Turner, Phys. Rev. 140, A426 (1965).

R. E. Huffman, J. C. Larrabee, and D. Chambers, Appl. Opt. 4, 1145 (1965).

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 5, 503 (1965).

D. K. Anderson, Phys. Rev. 137, A21 (1965).

1964 (1)

J. Geiger, Z. Physik 177, 138 (1964).

1962 (1)

J. W. Cooper, Phys. Rev. 128, 681 (1962).

1960 (1)

A. Burgess and M. I. Seaton, Monthly Not. Roy. Astron. Soc. 120, 121 (1960).

1952 (1)

A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).

1950 (1)

J. Koch and E. Rasmussen, Phys. Rev. 77, 722 (1950).

1949 (1)

J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949).

1942 (1)

C. Gregory, Phys. Rev. 61, 465 (1942).

1913 (1)

R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913).

Anderson, D. K.

D. K. Anderson, Phys. Rev. 137, A21 (1965).

Baird, D. C.

D. C. Baird, Experimentation: An Introduction to Measurement Theory and Experiment Design (Prentice–Hall, Inc., Englewood Cliffs, N. J., 1962).

Bohr, A.

A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).

Burgess, A.

A. Burgess and M. I. Seaton, Monthly Not. Roy. Astron. Soc. 120, 121 (1960).

Chambers, D.

Chashchina, G. I.

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 22, 284 (1967).

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 20, 283 (1966).

Cooper, J. W.

J. W. Cooper, Phys. Rev. 128, 681 (1962).

Dow, J. D.

J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).

Geiger, J.

J. Geiger, Z. Physik 177, 138 (1964).

Gregory, C.

C. Gregory, Phys. Rev. 61, 465 (1942).

Gruzdev, P. F.

P. F. Gruzdev, Opt. Spectrosc. 22, 170 (1967).

Huffman, R. E.

Knox, R. S.

J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).

Koch, J.

A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).

J. Koch and E. Rasmussen, Phys. Rev. 77, 722 (1950).

J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949).

Ladenburg, R.

R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913).

Larrabee, J. C.

Mitchell, A. C. G.

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961); reprinted, pp. 130–133.

Rasmussen, E.

A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).

J. Koch and E. Rasmussen, Phys. Rev. 77, 722 (1950).

J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949).

Reiche, F.

R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913).

Schreider, E. Ya.

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 22, 284 (1967).

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 20, 283 (1966).

Seaton, M. I.

A. Burgess and M. I. Seaton, Monthly Not. Roy. Astron. Soc. 120, 121 (1960).

Turner, R.

R. Turner, Phys. Rev. 140, A426 (1965).

Vaughan, J. M.

J. M. Vaughan, Phys. Rev. 166, 13 (1968).

Wilkinson, P. G.

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 6, 823 (1966).

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 5, 503 (1965).

Zemansky, M. W.

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961); reprinted, pp. 130–133.

Ann. Physik (1)

R. Ladenburg and F. Reiche, Ann. Physik 42, 181 (1913).

Appl. Opt. (1)

Arkiv Fysik (1)

A. Bohr, J. Koch, and E. Rasmussen, Arkiv Fysik 4, 455 (1952).

J. Quant. Spectry. Radiative Transfer (2)

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 5, 503 (1965).

P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 6, 823 (1966).

Monthly Not. Roy. Astron. Soc. (1)

A. Burgess and M. I. Seaton, Monthly Not. Roy. Astron. Soc. 120, 121 (1960).

Opt. Spectrosc. (3)

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 20, 283 (1966).

G. I. Chashchina and E. Ya. Schreider, Opt. Spectrosc. 22, 284 (1967).

P. F. Gruzdev, Opt. Spectrosc. 22, 170 (1967).

Phys. Rev. (8)

J. Koch and E. Rasmussen, Phys. Rev. 76, 1417 (1949).

J. Koch and E. Rasmussen, Phys. Rev. 77, 722 (1950).

J. M. Vaughan, Phys. Rev. 166, 13 (1968).

D. K. Anderson, Phys. Rev. 137, A21 (1965).

J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).

J. W. Cooper, Phys. Rev. 128, 681 (1962).

R. Turner, Phys. Rev. 140, A426 (1965).

C. Gregory, Phys. Rev. 61, 465 (1942).

Z. Physik (1)

J. Geiger, Z. Physik 177, 138 (1964).

Other (2)

D. C. Baird, Experimentation: An Introduction to Measurement Theory and Experiment Design (Prentice–Hall, Inc., Englewood Cliffs, N. J., 1962).

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1961); reprinted, pp. 130–133.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Total absorption vs the square root of the number density of the absorbing gas for the Kr 1164.856-Å 1S01P10 transition.

F. 2
F. 2

Schematic diagram of the experimental facilities. E—Excitation unit, M—sample gas manifold, S—light source, SP—vacuum spectrograph, D—detector, C—capacitance manometer, A—amplifier and recorder.

F. 3
F. 3

Pulsed discharge source. A—Argon inlet, B, C, D—ports to vacuum pumps, E—positive, high-voltage electrode, F, G, H—ports to vacuum gauges, J, K—cooling-water outlets, L, M—cooling-water inlets, N—third differential-pumping slit, O—O-ring gaskets, P—vacuum-spectrograph faceplate, R—metal flexible bellows, S—spectrograph entrance slit, T—quartz discharge tube, W—lithium fluoride window. Note: Lithium fluoride window is removed when differential-pumping windowless operation is desired.

F. 4
F. 4

Total absorption vs the square root of the number density of the absorbing gas for the Kr 1164.856-Å 1S01P10 transition.

F. 5
F. 5

Total absorption vs the square root of the number density of the absorbing gas for the Kr 1235.825-Å 1S03P00 transition.

F. 6
F. 6

Total absorption vs the square root of the number density of the absorbing gas for the Xe 1295.580-Å 1S01P10 transition.

Tables (5)

Tables Icon

Table I Total absorption for the Kr 1164.856-Å (1S01P1) transition as a function of the number density of absorbing gas.

Tables Icon

Table II Total absorption for the Kr 1235.826-Å (1S03P1) transition as a function of the number density of absorbing gas.

Tables Icon

Table III Total absorption for the Xe 1295.580-Å (1S01P1) transition as a function of the number density of absorbing gas.

Tables Icon

Table V Oscillator strengths of the resonance lines of krypton and xenon as determined by various investigators.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

A G = 2 π ( 1 e k ν l ) d ν ,
I ν / I 0 = e k ν l ,
A G = 2 π 0 [ 1 ( I ν / I 0 ) ] d ν .
k ν = e 2 4 π m c · N f τ ( ν ν 0 ) 2 .
A G = ( 4 π 2 e 2 N f l m c τ ) 1 2 ,
f τ = m c 8 π 2 e 2 · g 2 g 1 λ 0 2 ,
A G = ( 32 π 4 e 4 g 1 l N f 2 / m 2 c 2 g 2 λ 0 2 ) 1 2 .
k 0 l = 2 Δ ν D ( ln 2 / π ) 1 2 ( π e 2 / m c ) N f l ,
Δ ν D = 2 ν 0 c ( 2 R T ln 2 / M ) 1 2 .
N = ( P 760 ) ( 273 T ) ( 6.0228 × 10 23 2.2415 × 10 4 ) atoms cm 3 ,
A G = 1.8836 × 10 11 λ 1 λ 2 ( 1 I λ I 0 ) d λ λ 2 ,
A G = [ 0.27227 ( l / λ 0 2 ) 1 2 f ] N 1 2 .
A G = a + b [ N 1 2 ] ,
f = b / 0.27227 ( l / λ 0 2 ) 1 2 .
N × 1 0 14 cm 3 2
N 1 2 × 1 0 7 cm 3
N 1 2 × 1 0 7 cm 3 2
N 1 2 × 1 0 7 cm 3 2
b [ sec 1 cm 3 2 ]