Abstract

The linear electro-optic (Pockels) effect has been measured in the organic molecular crystal hexamethylenetetramine. Crystals were grown from water, alcohol, and chloroform solutions and from the vapor. Electro-optic coefficients computed from Sénarmont-compensator data range from 0.71 × 10−10 cm V−1 to 0.8 × 10−10 cm V−1 or, equivalently, in terms of half-wave voltage: V1/2λ = 85±5 kV. Crystal strain is not responsible for the much wider variation reported in the literature. Electric-field inhomogeneities are considered a more likely cause.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. McQuaid, Appl. Opt. 2, 320 (1963).
  2. C. F. Buhrer and L. Ho, Appl. Opt. 3, 1500 (1964).
  3. T. R. Sliker, J. Opt. Soc. Am. 54, 1348 (1964).
  4. R. W. McQuaid and M. C. Watkins, J. Opt. Soc. Am. 53, 1339 (1963).
  5. G. H. Heilmeier, Appl. Opt. 3, 1281 (1964).
  6. G. E. Gottlieb, J. Electrochem. Soc. 112, 903 (1965).
  7. Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).
  8. D. E. Swets, J. Crystal Growth 5, 299 (1969).
  9. H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).
  10. H. de Sénarmont, Ann. Chim. Phys. 73, 337 (1840).
  11. S. Namba, J. Opt. Soc. Am. 51, 76 (1961).
  12. F. Sterzer, D. J. Blattner, and S. F. Miniter, J. Opt. Soc. Am. 54, 62 (1964).
  13. G. N. Ramachandran and W. A. Wooster, Acta Cryst. 4, 431 (1951).
  14. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
  15. L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

1969 (1)

D. E. Swets, J. Crystal Growth 5, 299 (1969).

1965 (3)

G. E. Gottlieb, J. Electrochem. Soc. 112, 903 (1965).

Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

1964 (4)

1963 (2)

R. W. McQuaid, Appl. Opt. 2, 320 (1963).

R. W. McQuaid and M. C. Watkins, J. Opt. Soc. Am. 53, 1339 (1963).

1961 (1)

1951 (1)

G. N. Ramachandran and W. A. Wooster, Acta Cryst. 4, 431 (1951).

1948 (1)

1941 (1)

1840 (1)

H. de Sénarmont, Ann. Chim. Phys. 73, 337 (1840).

Belikova, G. A.

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Belyaev, L. M.

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Blattner, D. J.

Buhrer, C. F.

de Sénarmont, H.

H. de Sénarmont, Ann. Chim. Phys. 73, 337 (1840).

Dobrzhanskii, G. F.

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Gottlieb, G. E.

G. E. Gottlieb, J. Electrochem. Soc. 112, 903 (1965).

Heilmeier, G. H.

Ho, L.

Jerrard, H. G.

Jones, R. C.

McQuaid, R. W.

R. W. McQuaid and M. C. Watkins, J. Opt. Soc. Am. 53, 1339 (1963).

R. W. McQuaid, Appl. Opt. 2, 320 (1963).

Miniter, S. F.

Namba, S.

Netesov, G. B.

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Pisarevskii, Yu. V.

Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).

Ramachandran, G. N.

G. N. Ramachandran and W. A. Wooster, Acta Cryst. 4, 431 (1951).

Shaldin, Yu. V.

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).

Sliker, T. R.

Sterzer, F.

Swets, D. E.

D. E. Swets, J. Crystal Growth 5, 299 (1969).

Tregubov, G. A.

Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).

Watkins, M. C.

R. W. McQuaid and M. C. Watkins, J. Opt. Soc. Am. 53, 1339 (1963).

Wooster, W. A.

G. N. Ramachandran and W. A. Wooster, Acta Cryst. 4, 431 (1951).

Acta Cryst. (1)

G. N. Ramachandran and W. A. Wooster, Acta Cryst. 4, 431 (1951).

Ann. Chim. Phys. (1)

H. de Sénarmont, Ann. Chim. Phys. 73, 337 (1840).

Appl. Opt. (3)

J. Crystal Growth (1)

D. E. Swets, J. Crystal Growth 5, 299 (1969).

J. Electrochem. Soc. (1)

G. E. Gottlieb, J. Electrochem. Soc. 112, 903 (1965).

J. Opt. Soc. Am. (6)

Sov. Phys.—Solid State (2)

L. M. Belyaev, G. A. Belikova, G. F. Dobrzhanskii, G. B. Netesov, and Yu. V. Shaldin, Sov. Phys.—Solid State 6, 2007 (1965).

Yu. V. Pisarevskii, G. A. Tregubov, and Yu. V. Shaldin, Sov. Phys.—Solid State 7, 530 (1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

F. 1
F. 1

Hexa crystals grown from aqueous solution. The smallest scale division is 3.2 mm.

F. 2
F. 2

Vapor-grown hexa crystal. The smallest scale division is 0.4 mm.

F. 3
F. 3

The components of the Sénarmont compensator with relative axes alignment shown at the bottom. The Pockels axes (x1,x2) of the crystal (C) are at 45° to both the polarizer (P) and the quarter-wave plate ( 1 4 λ ) axes (Q1,Q2). The analyzer (A) is normally set at 90° to P initially, and rotated to a position of minimum light transmission for each crystal voltage. S represents a monochromatic light source.

F. 4
F. 4

Representative Sénarmont data for hexa crystals grown from aqueous solution.

F. 5
F. 5

Sénarmont data for two vapor-grown hexa crystals.

F. 6
F. 6

A thin (001) section of aqueous-grown crystal between crossed polarizers. The seed crystal is at the lower left, with the new growth region diagonally across the center of both photographs. The usual polarizer–crystal orientation (polarizers at 45° to Pockels axes) is shown in the left photograph, whereas the polarizers have been aligned with the Pockels axes in the right photograph. The sharp lines in the left photograph are in (110) planes and evidently mark growth-bath parameter changes.

F. 7
F. 7

Pressure cell for producing strain in hexa crystals. The lower photograph illustrates the optical quality of a typical aqueous-grown crystal in index-matching fluid and shown against a 1 2 - in. grid.

F. 8
F. 8

Transverse-mode Sénarmont data for different areas of a hexa crystal with compression along the 〈110〉 field direction. W and S specify whole crystal and thin section of the same crystal. 1, 2, 3, and 4 are arbitrary but different strains.

F. 9
F. 9

Computed influence of crystal strain upon measurement of the electro-optic retardation. In each plot, the true voltage-induced retardation ΓV is plotted as abscissa and that which would be observed from Sénarmont measurement Γexpt is plotted as ordinate. Each plot corresponds to a specific angle (10°, 15°, 20°, 30°, 40°, and 45°) between Pockels and strain axes, and the curves represent assumed strain-induced retardation Γ of 25°, 30°, 45°, and 60°. ——— Γ = 25°, — · — · — Γ = 30°, — — — Γ = 45°, · · · · · · · Γ = 60°.

Tables (1)

Tables Icon

Table I Electro-optic results for hexa.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = ( I 0 / 2 ) sin 2 ( Γ / 2 θ ) ,
Γ = 2 θ c .
Γ = C r 41 V ,
Γ = [ ( 2 π / λ ) ( t / d ) n 0 3 sin ϕ 1 sin ϕ 2 ] r 41 V ,
Γ υ = Γ total Γ = 2 θ c 2 θ 0 ,
A 1 = cos ( α ) cos ( α ) sin ( ω t ) + sin ( α ) sin ( α ) sin ( ω t + Γ 1 )
A 2 = cos ( α ) cos ( α ) sin ( ω t + Γ 1 + Γ 2 ) sin ( α ) sin ( α ) sin ( ω t + Γ 2 ) .