Abstract

The threshold visibility of uniformly moving colored gratings was investigated. The gratings were equiluminous sine-wave patterns, generated on a color-television display. The traveling waves were detected by the subject over a range of three log units of background illuminance, including various spatial- and temporal-frequency combinations. The experiments indicate that no resonance phenomena occur in the spatiotemporal color-discrimination system of the eye. This system probably functions as a low-pass filter. The color coding takes place in much narrower frequency bands than the brightness coding. A regular motion of the pattern never enhances the visibility of the color gratings. The temporal characteristics of the chromatic-discrimination system show very much resemblance to its spatial qualities. Our experiments show that the threshold chromatic contrast is proportional to the square root of the illuminance. This fundamental relationship can easily be understood from the statistical properties of the photons, absorbed in the differential receptor systems.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. C. van der Horst, C. M. M. de Weert, and M. A. Bouman, J. Opt. Soc. Am. 57, 1260 (1967).
    [Crossref] [PubMed]
  2. F. J. J. Clarke, in Symposium: Colour Measurement in Industry (The Colour Group, London), p. 132 (1967).
  3. H. Schober and H. Munker, Vision Res. 7, 1015 (1967).
    [Crossref] [PubMed]
  4. D. G. Green, J. Physiol. (London) 196, 415 (1968).
  5. S. M. Luria and S. Weissman, J.Opt. Soc. Am. 55, 1068 (1965).
    [Crossref]
  6. H. Wright, J. Opt. Soc. Am. 56, 1264 (1966).
    [Crossref] [PubMed]
  7. M. H. Siegel, J. Opt. Soc. Am. 55, 566 (1965).
    [Crossref]
  8. G. J. C. van der Horst, J. Opt. Soc. Am. 59, 1213 (1969).
    [Crossref] [PubMed]
  9. F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, J. Opt. Soc. Am. 57, 1082 (1967).
    [Crossref] [PubMed]
  10. The disadvantage of using a drifting wave pattern is that the temporal frequency ft is always coupled to the spatial frequency fs, for the temporal frequency is defined as the number of cycles that has passed per second a fixed point in the target. Or ft= υ· fs,in which υ is the velocity of translation.
  11. The highest spatial frequency we used, 18 cpd, consisted of 17 television lines per cycle.
  12. R. Barakat and S. Lerman, Appl. Opt. 6, 545 (1967).
    [Crossref] [PubMed]
  13. J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (1960).
    [Crossref]
  14. J. Nachmias, J. Opt. Soc. Am. 58, 9 (1968).
    [Crossref] [PubMed]
  15. F. L. van Nes, thesis, Utrecht (1968).
  16. J. M. Findlay, Vision Res. 9, 157 (1969).
    [Crossref] [PubMed]
  17. The studies of Nachmias14 and Van Nes15 on brightness discrimination may be compatible with our case. They show that the sensitivity for a small number of cycles is consistently lower than for a full grating. Their results indicate that the decline of sensitivity for the lowest-frequency grating may be several tens of percent.
  18. H. de Vries, Physica 10, 553 (1943).
    [Crossref]
  19. A. Rose, J. Opt. Soc. Am. 38, 196 (1948).
    [Crossref] [PubMed]
  20. R. Hilz and C. R. Cavonius, J. Opt. Soc. Am. 58, 1558A (1968).
  21. O. H. Schade, J. Soc. Motion Picture Television Engrs. 67, 801 (1958).
  22. G. J. C. van der Horst and M. A. Bouman, Vision Res. 7, 1027 (1967).
    [Crossref] [PubMed]
  23. N. W. Daw, Nature 203, 215 (1964).
    [Crossref] [PubMed]
  24. Opt. Soc. Am. Technical Group Report, J. Opt. Soc. Am.58, 441 (1968).
  25. G. J. C. van der Horst and W. Muis, Vision Res. 9, 953 (1969).
    [Crossref] [PubMed]
  26. F. L. Van Nes, Am. J. Psychol. 81, 367 (1968).
    [Crossref] [PubMed]
  27. D. L. MacAdam, J. Opt. Soc. Am. 32, 247 (1942).
    [Crossref]

1969 (3)

G. J. C. van der Horst, J. Opt. Soc. Am. 59, 1213 (1969).
[Crossref] [PubMed]

J. M. Findlay, Vision Res. 9, 157 (1969).
[Crossref] [PubMed]

G. J. C. van der Horst and W. Muis, Vision Res. 9, 953 (1969).
[Crossref] [PubMed]

1968 (4)

F. L. Van Nes, Am. J. Psychol. 81, 367 (1968).
[Crossref] [PubMed]

J. Nachmias, J. Opt. Soc. Am. 58, 9 (1968).
[Crossref] [PubMed]

R. Hilz and C. R. Cavonius, J. Opt. Soc. Am. 58, 1558A (1968).

D. G. Green, J. Physiol. (London) 196, 415 (1968).

1967 (5)

1966 (1)

1965 (2)

M. H. Siegel, J. Opt. Soc. Am. 55, 566 (1965).
[Crossref]

S. M. Luria and S. Weissman, J.Opt. Soc. Am. 55, 1068 (1965).
[Crossref]

1964 (1)

N. W. Daw, Nature 203, 215 (1964).
[Crossref] [PubMed]

1960 (1)

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

1958 (1)

O. H. Schade, J. Soc. Motion Picture Television Engrs. 67, 801 (1958).

1948 (1)

1943 (1)

H. de Vries, Physica 10, 553 (1943).
[Crossref]

1942 (1)

Anderson, A. E.

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Barakat, R.

Bouman, M. A.

Cavonius, C. R.

R. Hilz and C. R. Cavonius, J. Opt. Soc. Am. 58, 1558A (1968).

Clarke, F. J. J.

F. J. J. Clarke, in Symposium: Colour Measurement in Industry (The Colour Group, London), p. 132 (1967).

Coltman, J. W.

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Daw, N. W.

N. W. Daw, Nature 203, 215 (1964).
[Crossref] [PubMed]

de Vries, H.

H. de Vries, Physica 10, 553 (1943).
[Crossref]

de Weert, C. M. M.

Findlay, J. M.

J. M. Findlay, Vision Res. 9, 157 (1969).
[Crossref] [PubMed]

Green, D. G.

D. G. Green, J. Physiol. (London) 196, 415 (1968).

Hilz, R.

R. Hilz and C. R. Cavonius, J. Opt. Soc. Am. 58, 1558A (1968).

Koenderink, J. J.

Lerman, S.

Luria, S. M.

S. M. Luria and S. Weissman, J.Opt. Soc. Am. 55, 1068 (1965).
[Crossref]

MacAdam, D. L.

Muis, W.

G. J. C. van der Horst and W. Muis, Vision Res. 9, 953 (1969).
[Crossref] [PubMed]

Munker, H.

H. Schober and H. Munker, Vision Res. 7, 1015 (1967).
[Crossref] [PubMed]

Nachmias, J.

Nas, H.

Rose, A.

Schade, O. H.

O. H. Schade, J. Soc. Motion Picture Television Engrs. 67, 801 (1958).

Schober, H.

H. Schober and H. Munker, Vision Res. 7, 1015 (1967).
[Crossref] [PubMed]

Siegel, M. H.

van der Horst, G. J. C.

Van Nes, F. L.

F. L. Van Nes, Am. J. Psychol. 81, 367 (1968).
[Crossref] [PubMed]

F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, J. Opt. Soc. Am. 57, 1082 (1967).
[Crossref] [PubMed]

F. L. van Nes, thesis, Utrecht (1968).

Weissman, S.

S. M. Luria and S. Weissman, J.Opt. Soc. Am. 55, 1068 (1965).
[Crossref]

Wright, H.

Am. J. Psychol. (1)

F. L. Van Nes, Am. J. Psychol. 81, 367 (1968).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Opt. Soc. Am. (9)

J. Physiol. (London) (1)

D. G. Green, J. Physiol. (London) 196, 415 (1968).

J. Soc. Motion Picture Television Engrs. (1)

O. H. Schade, J. Soc. Motion Picture Television Engrs. 67, 801 (1958).

J.Opt. Soc. Am. (1)

S. M. Luria and S. Weissman, J.Opt. Soc. Am. 55, 1068 (1965).
[Crossref]

Nature (1)

N. W. Daw, Nature 203, 215 (1964).
[Crossref] [PubMed]

Physica (1)

H. de Vries, Physica 10, 553 (1943).
[Crossref]

Proc. IRE (1)

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (1960).
[Crossref]

Vision Res. (4)

H. Schober and H. Munker, Vision Res. 7, 1015 (1967).
[Crossref] [PubMed]

J. M. Findlay, Vision Res. 9, 157 (1969).
[Crossref] [PubMed]

G. J. C. van der Horst and M. A. Bouman, Vision Res. 7, 1027 (1967).
[Crossref] [PubMed]

G. J. C. van der Horst and W. Muis, Vision Res. 9, 953 (1969).
[Crossref] [PubMed]

Other (6)

Opt. Soc. Am. Technical Group Report, J. Opt. Soc. Am.58, 441 (1968).

The studies of Nachmias14 and Van Nes15 on brightness discrimination may be compatible with our case. They show that the sensitivity for a small number of cycles is consistently lower than for a full grating. Their results indicate that the decline of sensitivity for the lowest-frequency grating may be several tens of percent.

F. L. van Nes, thesis, Utrecht (1968).

F. J. J. Clarke, in Symposium: Colour Measurement in Industry (The Colour Group, London), p. 132 (1967).

The disadvantage of using a drifting wave pattern is that the temporal frequency ft is always coupled to the spatial frequency fs, for the temporal frequency is defined as the number of cycles that has passed per second a fixed point in the target. Or ft= υ· fs,in which υ is the velocity of translation.

The highest spatial frequency we used, 18 cpd, consisted of 17 television lines per cycle.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

F. 1
F. 1

CIE chromaticity diagram, R, G, and B are the chromaticity coordinates of the color-television phosphors. The chromatic threshold contrast was measured at standard white E.

F. 2
F. 2

Chromatic threshold-contrast modulation dependence on the spatial frequency of the sine-wave grating. Standard white E, with red–bluish-green modulation. Retinal illuminances 160, 35, 15, 3.4, 1.2, 0.69, and 0.30 td. The bars show the standard deviations. Purity is expressed in percent with respect to a dominant wavelength of 492 nm.

F. 3
F. 3

Chromatic threshold-contrast dependence on retinal illuminance. Standard white E, red–bluish-green modulation. Spatial frequencies 1.05(○), 4.5(X), 9(□) and 13(●) cpd. Dominant wavelength 492 nm.

F. 4
F. 4

Chromatic threshold contrast for traveling sine waves. Lower part: Contrast modulations at 5 temporal frequencies 0(○), 0.5(X), 5, 7, and 9.5 Hz. Upper part: threshold contrast dependence on temporal frequency for gratings of 1.05, 4.5, and 9.5 cpd. Retinal illuminance 160 td. Dominant wavelength 492 nm.

F. 5
F. 5

Results as in Fig. 4 at a retinal illuminance of 15 td.

F. 6
F. 6

Chromatic threshold-contrast modulation dependence on the spatial frequency of the sine-wave grating. Standard white E, with yellow–blue modulation. Retinal illuminances 160, 75, 35, 15, 3.4, and 1.2 td. Purity is expressed in percent with respect to a dominant wavelength of 573 nm.

F. 7
F. 7

Chromatic threshold-contrast dependence on retinal illuminance. Standard white E, yellow–blue modulation. Spatial frequencies of 1.05, 3, 6, and 13 cpd. Dominant wavelength 573 nm.

F. 8
F. 8

Chromatic threshold contrast for traveling sine waves. Lower part: Contrast modulations at 5 temporal frequencies 0(○), 0.5(X), 5, 7, and 9.5 Hz. Upper part: threshold contrast dependence on temporal frequency for gratings of 1.05, 4.5, and 9.5 cpd. Retinal illuminance 160 td. Dominant wavelength 573 nm.

F. 9
F. 9

Results as in Fig. 8 at a retinal illuminance of 15 td.

F. 10
F. 10

Chromatic threshold-contrast modulation as a function of spatial frequency for the yellow stimulus Y, with red–green modulation. Retinal illuminances 220, 48, 20, 4.6, and 1.6 td.

F. 11
F. 11

Chromatic threshold-contrast dependence on retinal illuminance. Yellow stimulus Y, with red–green modulation. Spatial frequencies 1.05 (○), 2.1 (X), 4.5, 9, and 18 cpd.

F. 12
F. 12

Chromatic threshold contrast for traveling sine waves. Lower part: Contrast modulations at 4 temporal frequencies 0(○), 0.5(X), 5, and 9.5 Hz. Upper part: threshold-contrast dependence on temporal frequency for gratings of 1.05, 9.5, and 18 cpd. Retinal illuminance 220 td.

F. 13
F. 13

Chromatic threshold contrast for traveling sine waves. Lower part: Contrast modulations at 5 temporal frequencies 0(○), 0.5 (X), 5, 7, and 9.5 Hz. Upper part: threshold-contrast dependence on temporal frequency for gratings of 1.05, 4.5, and 9.5 cpd. Retinal illuminance 20 td.

Tables (2)

Tables Icon

Table I CIE (x,y) coordinates and relative luminances of the color-television phosphors. The latter were obtained by flicker photometry.

Tables Icon

Table II Purity and dominant wavelength (with respect to source E) for chromatic loci on the lines R–E–bg and B–E–yy in the chromaticity diagram, (Fig. 1). M ≤ 1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( R ) = I r ( 1 + 0.16 M sin 2 π ( f s x + f t t ) )
I ( G ) = I g ( 1 + 0.16 M sin 2 π ( f s x + f t t ) ) 0.54
I ( B ) = I b ( 1 0.70 M sin 2 π ( f s x + f t t ) ) 0.51 ;
I ( R ) = I r ( 1 0.70 M sin 2 π ( f s x + f t t ) )
I ( G ) = I g ( 1 + 0.18 M sin 2 π ( f s x + f t t ) ) 0.54
I ( B ) = I b ( 1 + 0.18 M sin 2 π ( f s x + f t t ) ) 0.51 .
I ( R ) = I r ( 1 + 0.61 M sin 2 π ( f s x + f t t ) )
I ( G ) = I g ( 1 0.10 M sin 2 π ( f s x + f t t ) ) .