Abstract

An approximate solution to the problem of a light wave propagating through a lens is obtained by systematically replacing the integrals required to solve the problem by their stationary-phase approximation. This approach is shown to yield (1) geometrical optics in its eikonal form, and (2) a diffraction theory of image formation applicable to lenses with large apertures and fields.

PDF Article

References

  • View by:
  • |
  • |

  1. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).
  2. M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley-Interscience, Inc., New York, 1965).
  3. M. Herzberger, Strahlenoptik (Springer, Berlin, 1931).
  4. A. Walther, Am. J. Phys. 35, 808 (1967).
  5. A. Walther, J. Opt. Soc. Am. 57, 639 (1967).
  6. A sequence of such stationarity conditions is equivalent to the common ray-tracing equations.
  7. H. Osterberg and J. E. Wilkins, Jr., J. Opt. Soc. Am. 39, 553 (1949).
  8. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).
  9. T. Smith, Trans. Opt. Soc. (London) 28, 225 (1926โ€“1927).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Herzberger, M.

M. Herzberger, Strahlenoptik (Springer, Berlin, 1931).

Kay, I. W.

M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley-Interscience, Inc., New York, 1965).

Kline, M.

M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley-Interscience, Inc., New York, 1965).

Luneburg, R. K.

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).

Osterberg, H.

H. Osterberg and J. E. Wilkins, Jr., J. Opt. Soc. Am. 39, 553 (1949).

Smith, T.

T. Smith, Trans. Opt. Soc. (London) 28, 225 (1926โ€“1927).

Walther, A.

A. Walther, Am. J. Phys. 35, 808 (1967).

A. Walther, J. Opt. Soc. Am. 57, 639 (1967).

Wilkins, Jr., J. E.

H. Osterberg and J. E. Wilkins, Jr., J. Opt. Soc. Am. 39, 553 (1949).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Other (9)

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).

M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley-Interscience, Inc., New York, 1965).

M. Herzberger, Strahlenoptik (Springer, Berlin, 1931).

A. Walther, Am. J. Phys. 35, 808 (1967).

A. Walther, J. Opt. Soc. Am. 57, 639 (1967).

A sequence of such stationarity conditions is equivalent to the common ray-tracing equations.

H. Osterberg and J. E. Wilkins, Jr., J. Opt. Soc. Am. 39, 553 (1949).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

T. Smith, Trans. Opt. Soc. (London) 28, 225 (1926โ€“1927).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.