Abstract

The optical properties of cerium-activated garnet crystals have been investigated. In the garnet crystals showing luminescence, a bright-yellow fluorescence has been observed. The fluorescence exhibits structure at low temperatures, and the wavelength maxima of the fluorescence-spectrum profiles are found to be host-dependent. Energy transfer has been observed from the cerium ion to the neodymium ion.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Geusic, H. M. Marcus, and L. G. Van Uitert, in Proc. Physics of Quantum Electronics Conf. (McGraw–Hill Book Co., New York, 1966), p. 725; L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Letters 8, 200 (1966); J. E. Geusic, M. L. Hensel, and R. G. Smith, 6, 175 (1965); L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, 7, 127 (1965).
    [Crossref]
  2. W. W. Holloway and M. Kestigian, Phys. Letters 25A, 614 (1967).
  3. M. Kestigian and W. W. Holloway, Crystal Growth (Pergamon Press, Inc., New York, 1967), p. 451.
  4. G. Blasse and A. Bril, Appl. Phys. Letters 11, 53 (1967); J. Chem. Phys. 48, 3652 (1968).
    [Crossref]
  5. F. A. Kroger and J. Bakker, Physica 8, 628 (1941).
    [Crossref]
  6. A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

1967 (2)

W. W. Holloway and M. Kestigian, Phys. Letters 25A, 614 (1967).

G. Blasse and A. Bril, Appl. Phys. Letters 11, 53 (1967); J. Chem. Phys. 48, 3652 (1968).
[Crossref]

1963 (1)

A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

1941 (1)

F. A. Kroger and J. Bakker, Physica 8, 628 (1941).
[Crossref]

Bakker, J.

F. A. Kroger and J. Bakker, Physica 8, 628 (1941).
[Crossref]

Blasse, G.

G. Blasse and A. Bril, Appl. Phys. Letters 11, 53 (1967); J. Chem. Phys. 48, 3652 (1968).
[Crossref]

Bril, A.

G. Blasse and A. Bril, Appl. Phys. Letters 11, 53 (1967); J. Chem. Phys. 48, 3652 (1968).
[Crossref]

Feofilov, P. P.

A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

Geusic, J. E.

J. E. Geusic, H. M. Marcus, and L. G. Van Uitert, in Proc. Physics of Quantum Electronics Conf. (McGraw–Hill Book Co., New York, 1966), p. 725; L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Letters 8, 200 (1966); J. E. Geusic, M. L. Hensel, and R. G. Smith, 6, 175 (1965); L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, 7, 127 (1965).
[Crossref]

Holloway, W. W.

W. W. Holloway and M. Kestigian, Phys. Letters 25A, 614 (1967).

M. Kestigian and W. W. Holloway, Crystal Growth (Pergamon Press, Inc., New York, 1967), p. 451.

Kaplyanskii, A. A.

A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

Kestigian, M.

W. W. Holloway and M. Kestigian, Phys. Letters 25A, 614 (1967).

M. Kestigian and W. W. Holloway, Crystal Growth (Pergamon Press, Inc., New York, 1967), p. 451.

Kroger, F. A.

F. A. Kroger and J. Bakker, Physica 8, 628 (1941).
[Crossref]

Marcus, H. M.

J. E. Geusic, H. M. Marcus, and L. G. Van Uitert, in Proc. Physics of Quantum Electronics Conf. (McGraw–Hill Book Co., New York, 1966), p. 725; L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Letters 8, 200 (1966); J. E. Geusic, M. L. Hensel, and R. G. Smith, 6, 175 (1965); L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, 7, 127 (1965).
[Crossref]

Medvedev, V. N.

A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

Van Uitert, L. G.

J. E. Geusic, H. M. Marcus, and L. G. Van Uitert, in Proc. Physics of Quantum Electronics Conf. (McGraw–Hill Book Co., New York, 1966), p. 725; L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Letters 8, 200 (1966); J. E. Geusic, M. L. Hensel, and R. G. Smith, 6, 175 (1965); L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, 7, 127 (1965).
[Crossref]

Appl. Phys. Letters (1)

G. Blasse and A. Bril, Appl. Phys. Letters 11, 53 (1967); J. Chem. Phys. 48, 3652 (1968).
[Crossref]

Opt. i Spektroskopiya (1)

A. A. Kaplyanskii, V. N. Medvedev, and P. P. Feofilov, Opt. i Spektroskopiya 14, 351 (1963).

Phys. Letters (1)

W. W. Holloway and M. Kestigian, Phys. Letters 25A, 614 (1967).

Physica (1)

F. A. Kroger and J. Bakker, Physica 8, 628 (1941).
[Crossref]

Other (2)

M. Kestigian and W. W. Holloway, Crystal Growth (Pergamon Press, Inc., New York, 1967), p. 451.

J. E. Geusic, H. M. Marcus, and L. G. Van Uitert, in Proc. Physics of Quantum Electronics Conf. (McGraw–Hill Book Co., New York, 1966), p. 725; L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, Appl. Phys. Letters 8, 200 (1966); J. E. Geusic, M. L. Hensel, and R. G. Smith, 6, 175 (1965); L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, 7, 127 (1965).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Infrared absorption spectra of several cerium-doped garnet crystals. Two prominent transitions are observed at 2.65 and 2.85 μ while a weaker transition, observed at approximately 4.8 μ, is also present in undoped crystals.

Fig. 2
Fig. 2

The near-uv absorption spectra of (Czochralski-grown) Y3Al5O12:Ce (– – – – –), Lu3Al5O12:Ce (——) and Y3Al2Ga3O12:Ce (–·–·–·–). Two prominent transitions are observed at approximately 0.42 and 0.38 μ. The absorption transition at 0.26 μ is apparently due to the inclusion of flux in the crystals and is also observed in the flux-grown Y3Al5O12:Ce sample (e.g., Fig. 3).

Fig. 3
Fig. 3

The near-uv absorption spectra of (flux-grown) Y3Al5O12:Ce (—·—·—·—), Gd1.5Y1.5Al5O12:Ce (– – – – –) and Gd3Al5O12:Ce (——). Two prominent transitions are observed at approximately 0.42 and 0.38 μ. The absorption transition at 0.26 μ appears to be due to flux inclusion in the samples.

Fig. 4
Fig. 4

Comparison of the room-temperature fluorescence of the cerium ion in flux-grown crystals of Y3Al5O12 (——), Y3Al4Sc1O12 (— — —) Y3Al3.5Ga1.5O12 (— – —) Y3Al4Ga1O12 (—·—·—), and Y3Al2.5Ga2.5O12 (—⋯—⋯—). The substitution of a larger ion for the aluminum component in Y3Al5O12:Ce causes a shift of the shorter wavelengths of the cerium-ion fluorescence.

Fig. 5
Fig. 5

Comparison of the low-temperature (i.e., 77°K) fluorescence of the cerium ion in flux-grown crystals Y3Al5O12 (— —), Y3Al4Sc1O12 (——), Y3Al4Ga1O12 (—·—·—), and Y3Al3.5Ga1.5O12 (— – — – —), Y3Al2Ga3O12 (— — —), and Y3Al1.5Ga3.5O12 (—⋯—⋯—). The shift to shorter wavelengths of the cerium fluorescence caused by substitution of a larger ion for the aluminum component is preserved. The partial resolution of the fluorescence into two components is also evident.

Fig. 6
Fig. 6

Comparison of the room-temperature fluorescence of the cerium ion in flux-grown crystals of Gd2Y1Al5O12 (——), La1.5Y1.5Al5O12 (— — —), Y3Al5O12 (—·—·—), Lu1.5Y1.5Al5O12 (— – — – —), and Lu3Al5O12 (—⋯—⋯—). The cerium fluorescence is shifted to longer wavelengths when a larger ion is substituted for yttrium-ion component in Y3Al5O12 and to shorter wavelengths when a smaller ion is substituted for the yttrium-ion component.

Fig. 7
Fig. 7

Comparison of the low-temperature (i.e., 77°K) fluorescence of the cerium ion in flux-grown crystals of Gd2Y1Al5O12 (——), La1.5Y1.5Al5O12 (—·—·—), Y3Al5O12 (— — — —), Lu1.5Al5O12 (— – — – —) and Lu3Al5O12 (—⋯—⋯—). The partial resolution of the two components of the cerium fluorescence is seen, as well as the shifts similar to those of Fig. 6.

Fig. 8
Fig. 8

Comparison of the room-temperature fluorescence of the cerium ion in flux-grown crystals of La1.5Y1.5Al5O12 (— – —), Gd1.5Y1.5Al5O12 (—·—·—), Gd1.5Y1.5Al4Ga1O12 (——), and La1.5Y1.5Ga2.5O12 (—··—). The shift of the cerium fluorescence to short wavelengths by substitution of smaller ions in the rare-earth site of the garnet crystal or by substitution of larger ions in aluminum site is shown for these mixed crystals.

Fig. 9
Fig. 9

A comparison of the visible fluorescence spectra of Y3Al5O12:Ce (– – – – –) with that of Y3Al5O12:Ce:Nd (——). The difference between the spectra can be attributed to known Nd3+ absorption transitions, thereby establishing the radiative coupling between the neodymium and fluorescent cerium ion.

Fig. 10
Fig. 10

The sensitization of the Nd3+ fluorescence by the presence of the cerium ion in Y3Al5O12. The difference between excitation of the neodymium fluorescence in crystals of Y3Al5O12: Nd (——) and the neodymium fluorescence in Y3Al5O12:Ce:Nd (– – – –) is the same as the excitation of the cerium-ion fluorescence in Y3Al5O12: Ce (—·—·). The remaining curve (—⋯—⋯—⋯) shows the wavelength dependence of the excitation source.