Abstract

We consider ruby as a linear, uniaxial, maxwellian medium, which, in its absorbing state, has axially dependent material constants. It is made active by pumping with electric fields, in the region of shorter-wavelength absorption bands, which, by means of an energy transfer, induce source-type electric fields having constant amplitudes in the <i>R</i><sub>1</sub> and <i>R</i><sub>2</sub> regions, and make possible absorption, spontaneous emission, and stimulated emission. Experiments indicate that the absorption, fluorescence, and laser action are all maximum for electric fields perpendicular to the optic axis, and minimum when the electric field is parallel to the optic axis; the relative irradiances and shapes of the <i>R</i><sub>1</sub> and <i>R</i><sub>2</sub> bands in all cases depend upon the orientation of the plane of polarization of the emerging radiant flux relative to the optic axis. Attempts are made to compute the spectral distributions in the <i>R</i><sub>1</sub> and <i>R</i><sub>2</sub> bands for the ordinary and extraordinary waves, neglecting all boundary-value problems. Agreement was found to be possible only in the region below the threshold of laser action.

PDF Article

References

  • View by:
  • |
  • |

  1. A. I. Mahan, J. Opt. Soc. Am. 55, 1611 (1965).
  2. M. Born, Optik (Julius Springer. Berlin, 1933), p. 218.
  3. H. Geiger and K. Scheel in Handbuch der Physik, V. 20 (Julius Springer-Verlag, Berlin, 1928), pp. 184, 194.
  4. It should be clear that for the study of some substances it would be necessary to consider pumping with magnetic fields, but this will be reserved for magnetic-absorption processes.
  5. C. E. Mendenhall and R. W. Wood, Phil Mag. 30, 316 (1914); P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 643; I. Wieder, Rev. Sci. Instr. 30, 995 (1959); E. E. Bukke and Z. L. Morgenshtern, Opt. Spectry. 14, 362 (1963).
  6. T. H. Maiman, Nature 187, 493 (1960); T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa, and V. Evtuhov, Phys. Rev. 123, 1151 (1961).
  7. H. P. Kallmann and G. M. Spruch, Luminescence of Organic and Inorganic Materials (J. Wiley & Sons, Inc., New York, 1962), p. 659.
  8. A. Einstein, Verh. Deut. Ges. 18, 318 (1916).
  9. In the initial stages of development of the theory, we must consider fixed differences of phase ψ, before we can consider the more practical problem of random phase.
  10. P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 306.
  11. C. Schaefer, Einführung in die theoretische Physik (Walter DeGruyter & Co., Berlin, 1949), Vol. 3, p. 771.
  12. H. DuBois and G. J. Elias, Ann. Physik, 35, 618 (1911); O. Deutschbein, Ann. Physik. 14, 712 (1932); S. F. Jacobs, The Johns Hopkins University, Ph.D. thesis (1956); S. Sugano and I. Tsuijikawa, J. Phys. Soc. Japan 13, 899 (1958).
  13. The interference effects in the six-inch-long ruby rod used in these experiments are too small to be resolved by the spectrograph, even with a perfectly plane parallel homogeneous crystal.
  14. A. Kastler, Appl. Opt. 1, 17 (1962).
  15. International Critical Tables, E. W. Washburn, Ed. (McGraw-Hill Book Co., New York, 1930) Vol. VII, p. 2.
  16. D. M. Dodd, D. L. Wood and R. L. Barns, J. Appl. Phys. 35, 1183 (1964).
  17. The method used for measuring the refractive indices was described at 1967 Annual Meeting of the Optical Society, [M. J. Dodge, I. H. Malitson, and A. I. Mahan, J. Opt. Soc. Am. 57, 1429A (1967)], Detroit, Michigan.
  18. E. S. Dorman, The Johns Hopkins University, Ph.D. thesis (1965).
  19. F. S. Woods, Advanced Calculus (Ginn and Co., New York, 1926), p. 139.
  20. T. H. Maiman, Phys. Rev. 123, 1145 (1961).

Barns, R. L.

D. M. Dodd, D. L. Wood and R. L. Barns, J. Appl. Phys. 35, 1183 (1964).

Born, M.

M. Born, Optik (Julius Springer. Berlin, 1933), p. 218.

Dodd, D. M.

D. M. Dodd, D. L. Wood and R. L. Barns, J. Appl. Phys. 35, 1183 (1964).

Dodge, M. J.

The method used for measuring the refractive indices was described at 1967 Annual Meeting of the Optical Society, [M. J. Dodge, I. H. Malitson, and A. I. Mahan, J. Opt. Soc. Am. 57, 1429A (1967)], Detroit, Michigan.

Dorman, E. S.

E. S. Dorman, The Johns Hopkins University, Ph.D. thesis (1965).

DuBois, H.

H. DuBois and G. J. Elias, Ann. Physik, 35, 618 (1911); O. Deutschbein, Ann. Physik. 14, 712 (1932); S. F. Jacobs, The Johns Hopkins University, Ph.D. thesis (1956); S. Sugano and I. Tsuijikawa, J. Phys. Soc. Japan 13, 899 (1958).

Einstein, A.

A. Einstein, Verh. Deut. Ges. 18, 318 (1916).

Elias, G. J.

H. DuBois and G. J. Elias, Ann. Physik, 35, 618 (1911); O. Deutschbein, Ann. Physik. 14, 712 (1932); S. F. Jacobs, The Johns Hopkins University, Ph.D. thesis (1956); S. Sugano and I. Tsuijikawa, J. Phys. Soc. Japan 13, 899 (1958).

Geiger, H.

H. Geiger and K. Scheel in Handbuch der Physik, V. 20 (Julius Springer-Verlag, Berlin, 1928), pp. 184, 194.

Kallmann, H. P.

H. P. Kallmann and G. M. Spruch, Luminescence of Organic and Inorganic Materials (J. Wiley & Sons, Inc., New York, 1962), p. 659.

Kastler, A.

A. Kastler, Appl. Opt. 1, 17 (1962).

Mahan, A. I.

A. I. Mahan, J. Opt. Soc. Am. 55, 1611 (1965).

The method used for measuring the refractive indices was described at 1967 Annual Meeting of the Optical Society, [M. J. Dodge, I. H. Malitson, and A. I. Mahan, J. Opt. Soc. Am. 57, 1429A (1967)], Detroit, Michigan.

Maiman, T. H.

T. H. Maiman, Nature 187, 493 (1960); T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa, and V. Evtuhov, Phys. Rev. 123, 1151 (1961).

T. H. Maiman, Phys. Rev. 123, 1145 (1961).

Malitson, I. H.

The method used for measuring the refractive indices was described at 1967 Annual Meeting of the Optical Society, [M. J. Dodge, I. H. Malitson, and A. I. Mahan, J. Opt. Soc. Am. 57, 1429A (1967)], Detroit, Michigan.

Mendenhall, C. E.

C. E. Mendenhall and R. W. Wood, Phil Mag. 30, 316 (1914); P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 643; I. Wieder, Rev. Sci. Instr. 30, 995 (1959); E. E. Bukke and Z. L. Morgenshtern, Opt. Spectry. 14, 362 (1963).

Pringsheim, P.

P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 306.

Schaefer, C.

C. Schaefer, Einführung in die theoretische Physik (Walter DeGruyter & Co., Berlin, 1949), Vol. 3, p. 771.

Scheel, K.

H. Geiger and K. Scheel in Handbuch der Physik, V. 20 (Julius Springer-Verlag, Berlin, 1928), pp. 184, 194.

Spruch, G. M.

H. P. Kallmann and G. M. Spruch, Luminescence of Organic and Inorganic Materials (J. Wiley & Sons, Inc., New York, 1962), p. 659.

Wood, D. L.

D. M. Dodd, D. L. Wood and R. L. Barns, J. Appl. Phys. 35, 1183 (1964).

Wood, R. W.

C. E. Mendenhall and R. W. Wood, Phil Mag. 30, 316 (1914); P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 643; I. Wieder, Rev. Sci. Instr. 30, 995 (1959); E. E. Bukke and Z. L. Morgenshtern, Opt. Spectry. 14, 362 (1963).

Woods, F. S.

F. S. Woods, Advanced Calculus (Ginn and Co., New York, 1926), p. 139.

Other (20)

A. I. Mahan, J. Opt. Soc. Am. 55, 1611 (1965).

M. Born, Optik (Julius Springer. Berlin, 1933), p. 218.

H. Geiger and K. Scheel in Handbuch der Physik, V. 20 (Julius Springer-Verlag, Berlin, 1928), pp. 184, 194.

It should be clear that for the study of some substances it would be necessary to consider pumping with magnetic fields, but this will be reserved for magnetic-absorption processes.

C. E. Mendenhall and R. W. Wood, Phil Mag. 30, 316 (1914); P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 643; I. Wieder, Rev. Sci. Instr. 30, 995 (1959); E. E. Bukke and Z. L. Morgenshtern, Opt. Spectry. 14, 362 (1963).

T. H. Maiman, Nature 187, 493 (1960); T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa, and V. Evtuhov, Phys. Rev. 123, 1151 (1961).

H. P. Kallmann and G. M. Spruch, Luminescence of Organic and Inorganic Materials (J. Wiley & Sons, Inc., New York, 1962), p. 659.

A. Einstein, Verh. Deut. Ges. 18, 318 (1916).

In the initial stages of development of the theory, we must consider fixed differences of phase ψ, before we can consider the more practical problem of random phase.

P. Pringsheim, Fluorescence and Phosphorescence (Interscience Publishers, Inc., John Wiley & Sons, New York, 1949), p. 306.

C. Schaefer, Einführung in die theoretische Physik (Walter DeGruyter & Co., Berlin, 1949), Vol. 3, p. 771.

H. DuBois and G. J. Elias, Ann. Physik, 35, 618 (1911); O. Deutschbein, Ann. Physik. 14, 712 (1932); S. F. Jacobs, The Johns Hopkins University, Ph.D. thesis (1956); S. Sugano and I. Tsuijikawa, J. Phys. Soc. Japan 13, 899 (1958).

The interference effects in the six-inch-long ruby rod used in these experiments are too small to be resolved by the spectrograph, even with a perfectly plane parallel homogeneous crystal.

A. Kastler, Appl. Opt. 1, 17 (1962).

International Critical Tables, E. W. Washburn, Ed. (McGraw-Hill Book Co., New York, 1930) Vol. VII, p. 2.

D. M. Dodd, D. L. Wood and R. L. Barns, J. Appl. Phys. 35, 1183 (1964).

The method used for measuring the refractive indices was described at 1967 Annual Meeting of the Optical Society, [M. J. Dodge, I. H. Malitson, and A. I. Mahan, J. Opt. Soc. Am. 57, 1429A (1967)], Detroit, Michigan.

E. S. Dorman, The Johns Hopkins University, Ph.D. thesis (1965).

F. S. Woods, Advanced Calculus (Ginn and Co., New York, 1926), p. 139.

T. H. Maiman, Phys. Rev. 123, 1145 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.