Abstract

The absorption spectrum of water vapor has been studied quantitatively with a resolution of approximately 0.12 cm−1 between 475–692 cm−1. Several methods of extracting the intensity and line-width parameters from the measurements on 19 well-resolved lines are compared and discussed. The intensities show deviations from those calculated for a rigid asymmetric rotor, which are attributed to effects of centrifugal stretching. Half-widths are presented for H2O–H2O, H2O–N2, H2O–CO2, and H2O–He broadening at 80°C and for H2O-air at 24°C.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Goody, Atmospheric Radiation, Vol. 1, Theoretical Basis (Oxford University Press, London, 1964).
  2. W. S. Benedict and L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).
  3. W. S. Benedict and L. D. Kaplan, J. Quant. Spectry. Radiative Transfer 34, 453 (1964).
    [CrossRef]
  4. K. N. Rao, L. R. Ryan, and H. H. Nielsen, J. Opt. Soc. Am. 49, 216 (1959); K. N. Rao, W. W. Brim, U. L. Sinnett, and R. H. Wilson, 52, 862 (1962).
    [CrossRef]
  5. M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).
  6. C. H. Palmer, J. Opt. Soc. Am. 47, 1024, 1028 (1957); J. Opt. Soc. Am. 47, 1028 (1957); J. Opt. Soc. Am. 50, 1232 (1960).
    [CrossRef]
  7. F. R. Stauffer and T. E. Walsh, J. Opt. Soc. Am. 56, 401 (1966).
    [CrossRef]
  8. R. P. Madden, J. Chem. Phys. 35, 2082 (1961).
    [CrossRef]
  9. J. R. Izatt, Dissertation, The Johns Hopkins University (1960).
  10. P. C. von Planta, J. Opt. Soc. Am. 47, 629 (1957).
    [CrossRef]
  11. H. J. Kostkowski and A. M. Bass, J. Opt. Soc. Am. 46, 1060 (1956).
    [CrossRef]
  12. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
    [CrossRef]
  13. R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1911).
  14. H. Sakai, Dissertation, The Johns Hopkins University (1962).
  15. D. Burch, private communication.
  16. W. S. Benedict and L. D. Kaplan, private communication. Also see Ref. 1.

1966 (1)

1964 (1)

W. S. Benedict and L. D. Kaplan, J. Quant. Spectry. Radiative Transfer 34, 453 (1964).
[CrossRef]

1961 (1)

R. P. Madden, J. Chem. Phys. 35, 2082 (1961).
[CrossRef]

1959 (2)

1957 (3)

P. C. von Planta, J. Opt. Soc. Am. 47, 629 (1957).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Am. 47, 1024, 1028 (1957); J. Opt. Soc. Am. 47, 1028 (1957); J. Opt. Soc. Am. 50, 1232 (1960).
[CrossRef]

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

1956 (2)

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

H. J. Kostkowski and A. M. Bass, J. Opt. Soc. Am. 46, 1060 (1956).
[CrossRef]

1911 (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1911).

Bass, A. M.

Benedict, W. S.

W. S. Benedict and L. D. Kaplan, J. Quant. Spectry. Radiative Transfer 34, 453 (1964).
[CrossRef]

W. S. Benedict and L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

W. S. Benedict and L. D. Kaplan, private communication. Also see Ref. 1.

Burch, D.

D. Burch, private communication.

Goody, R. M.

R. M. Goody, Atmospheric Radiation, Vol. 1, Theoretical Basis (Oxford University Press, London, 1964).

Herman, R.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

Izatt, J. R.

J. R. Izatt, Dissertation, The Johns Hopkins University (1960).

Kaplan, L. D.

W. S. Benedict and L. D. Kaplan, J. Quant. Spectry. Radiative Transfer 34, 453 (1964).
[CrossRef]

W. S. Benedict and L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

W. S. Benedict and L. D. Kaplan, private communication. Also see Ref. 1.

Kostkowski, H. J.

Ladenberg, R.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1911).

Madden, R. P.

R. P. Madden, J. Chem. Phys. 35, 2082 (1961).
[CrossRef]

Migeotte, M.

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

Moore, G. E.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

Neven, L.

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

Nielsen, H. H.

Palmer, C. H.

Rao, K. N.

Reiche, F.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1911).

Ryan, L. R.

Sakai, H.

H. Sakai, Dissertation, The Johns Hopkins University (1962).

Silverman, S.

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

Stauffer, F. R.

Swennson, J.

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

von Planta, P. C.

Walsh, T. E.

Ann. Physik (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1911).

Can. J. Phys. (1)

W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can. J. Phys. 34, 830 (1956).
[CrossRef]

J. Chem. Phys. (2)

W. S. Benedict and L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

R. P. Madden, J. Chem. Phys. 35, 2082 (1961).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Quant. Spectry. Radiative Transfer (1)

W. S. Benedict and L. D. Kaplan, J. Quant. Spectry. Radiative Transfer 34, 453 (1964).
[CrossRef]

Memoires de la Societé Royal des Sciences de Liège (1)

M. Migeotte, L. Neven, J. Swennson, and W. S. Benedict, Memoires de la Societé Royal des Sciences de Liège, Special Volume No.  2 (1957).

Other (5)

J. R. Izatt, Dissertation, The Johns Hopkins University (1960).

R. M. Goody, Atmospheric Radiation, Vol. 1, Theoretical Basis (Oxford University Press, London, 1964).

H. Sakai, Dissertation, The Johns Hopkins University (1962).

D. Burch, private communication.

W. S. Benedict and L. D. Kaplan, private communication. Also see Ref. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrometer and auxiliary optics.

Fig. 2
Fig. 2

Typical segment of the sell-broadened spectrum. Temperature given in degrees C and pressure in mm of Hg.

Fig. 3
Fig. 3

Low-pressure scans of the water-vapor spectrum from 692 to 635 cm−1. For each segment, the temperature is given in degrees C, and the pressure is given in mm of Hg. See Table I for identification of lines.

Fig. 4
Fig. 4

Low-pressure scans of the water-vapor spectrum from 635 to 580 cm−1.

Fig. 5
Fig. 5

Low-pressure scans of the water-vapor spectrum from 580 to 535 cm−1.

Fig. 6
Fig. 6

Low-pressure scans of the water-vapor spectrum from 535 to 495 cm−1.

Fig. 7
Fig. 7

Low-pressure scans of the water-vapor spectrum from 495 to 475 cm−1.

Fig. 8
Fig. 8

The Fourier transforms of the observed and corrected line shape. ν0=594.94 cm−1 862 − 735, T=80°C, p=321 mm Hg. (1) ● ● ● ●; Transform of the lorentzian shape with S and γ obtained by the FT analysis. (2) □ □ □ □; The transform of the observed shape. (3) · · · ·; Transform of the corrected shape. (4) —— ; Transform of the lorentzian shape with S and γ obtained by the SWFG method.

Tables (4)

Tables Icon

Table I H2O line-position measurements.

Tables Icon

Table II Line intensities and widths for self-broadened H2O lines (T=80°C).

Tables Icon

Table III Atmospheric broadening γ0(cm−1/atm) at 24°C.

Tables Icon

Table IV Foreign-gas broadening γ0(cm−1/atm).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( ν ) = 1 - exp { - S γ l π 1 ( ν - ν 0 ) 2 + γ 2 } ,
A obs ( ν ) = - A ( ν ) g ( ν - ν ) d ν .
W = - A obs ( ν ) d ν .
Δ W = W - W g = ( W g ) 2 / 2 π g .
W g = ν 0 - g ν 0 + g A obs ( ν ) d ν .
S obs = π S obs g / 2 tan - 1 ( g / γ ) ,
S obs g = - ν 0 - g ν 0 + g ln [ 1 - A obs ( ν ) ] d ν .
W = 2 π γ F ( x ) = 2 π γ x e - x { J 0 ( i x ) - i J 1 ( i x ) } ,
x = S l / 2 π γ .
G ( x ) = F ( x ) / x = W / S l
à obs ( z ) = à ( z ) g ˜ ( z ) .
g ˜ ( z ) = [ sin z Δ ν z Δ ν ] 2 [ 1 - z Δ ν μ π ] , z < μ π Δ ν = 0 z μ ν Δ ν .