Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill Book Co., New York, 1961), pp. 112, 155.
  2. D. L. Fried, J. Opt. Soc. Am. 56, 1380 (1966).
    [Crossref]
  3. H. R. Hewlett, J. Opt. Soc. Am. 57, 1335 (1967).
    [Crossref]
  4. R. E. Hufnagel, in Woods Hole Summer Study, July 1966 (National Research Council of the National Academy of Science, Washington, D. C., 1967), Vol. 2, Appendix III.

1967 (1)

1966 (1)

Fried, D. L.

Hewlett, H. R.

Hufnagel, R. E.

R. E. Hufnagel, in Woods Hole Summer Study, July 1966 (National Research Council of the National Academy of Science, Washington, D. C., 1967), Vol. 2, Appendix III.

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill Book Co., New York, 1961), pp. 112, 155.

J. Opt. Soc. Am. (2)

Other (2)

R. E. Hufnagel, in Woods Hole Summer Study, July 1966 (National Research Council of the National Academy of Science, Washington, D. C., 1967), Vol. 2, Appendix III.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw–Hill Book Co., New York, 1961), pp. 112, 155.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Ground-level aperture-scale size as a function of object altitude.

Fig. 2
Fig. 2

Limiting resolution as a function of object altitude, for ground-level aperture Dr0.

Tables (1)

Tables Icon

Table I Dependence of the normalized integral on x I ( x ) = x - 5 / 3 0 x e - t ( x - t ) 5 / 3 t - 1 / 3 d t / Γ ( 2 - 3 ) .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D ( ρ ) = 2.91 k 2 L C n 2 ρ 5 / 3 ,
D ( ρ ) = 2.91 k 2 0 z C n 2 r 5 / 3 d s .
r = ρ ( 1 - s / z ) .
C n 2 = C n 0 2 L 1 1 2 s - 1 3 exp ( - s / h 0 ) ,
D ( ρ ) = 2.91 k 2 C n 0 2 h 0 2 3 Γ ( 2 3 ) i ( z / h 0 ) ρ 5 / 3 ,
( z h 0 ) 5 / 3 Γ ( 2 3 ) I ( z / h 0 ) = 0 z / h 0 e - t ( z h 0 - t ) 5 / 3 t - 1 2 d t .
I = 15 14 Γ ( 2 3 ) Γ ( 1 3 ) ( z h 0 ) 2 3 ,
D ( ρ ) = 6.88 ( ρ / r 0 ) 5 / 3 ,
r 0 = [ ( 2.91 / 6.88 ) k 2 C n 0 2 h 0 2 3 L 1 - 1 2 Γ ( 2 3 ) I ( z / h 0 ) ] - 3 / 5
δ l = λ z / π 1 2 r 0 .
I ( x ) = x - 5 / 3 0 x e - t ( x - t ) 5 / 3 t - 1 / 3 d t / Γ ( 2 - 3 ) .