Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Altman, Appl. Opt. 3, 35 (1964).
    [Crossref]
  2. J. A. Eyer, Appl. Spectry. 14, 4 (1960).
    [Crossref]
  3. When the measuring microdensitometer introduces a component of noise that is gaussian with standard deviation σM, we haveσ=(σD2+σM2)12ln10γ*=1γ*[aD ln10A+(σM ln10)2]12,since in the making of the overall measurement, the variances of the gaussian processes add.
  4. R. C. Jones, Phot. Sci. Eng. 2, 57 (1958).

1964 (1)

1960 (1)

J. A. Eyer, Appl. Spectry. 14, 4 (1960).
[Crossref]

1958 (1)

R. C. Jones, Phot. Sci. Eng. 2, 57 (1958).

Altman, J. H.

Eyer, J. A.

J. A. Eyer, Appl. Spectry. 14, 4 (1960).
[Crossref]

Jones, R. C.

R. C. Jones, Phot. Sci. Eng. 2, 57 (1958).

Appl. Opt. (1)

Appl. Spectry. (1)

J. A. Eyer, Appl. Spectry. 14, 4 (1960).
[Crossref]

Phot. Sci. Eng. (1)

R. C. Jones, Phot. Sci. Eng. 2, 57 (1958).

Other (1)

When the measuring microdensitometer introduces a component of noise that is gaussian with standard deviation σM, we haveσ=(σD2+σM2)12ln10γ*=1γ*[aD ln10A+(σM ln10)2]12,since in the making of the overall measurement, the variances of the gaussian processes add.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ D = ( ln 10 ) - 1 σ T T [ 1 + 1 12 ( σ T T ) 2 + 1 80 ( σ T T ) 4 + + ] ,
( σ T / T ) 0.4 ,
σ D = σ T / T ln 10 ,
D = - log T ,
Var ( - log T ) = ( σ T / T ln 10 ) 2 = Var ( log T ) ,
σ H = σ D / γ * .
σ D γ * = σ H = [ Var ( log E ) ] 1 2 = σ E E ln 10 ,
σ = σ E / E ,
σ = σ D ln 10 / γ *
σ D = [ Var ( D ) ] 1 2 = [ Var ( g E + B ) ] 1 2 = g σ E = ( d D d E ) σ E = ( d D d log E ) ( d log E d E ) σ E = ( γ * ) ( 1 E ln 10 ) σ E ,
σ = σ D ln 10 / γ * .
σ D = ( a D / A ln 10 ) 1 2 ,
σ = ( 1 / γ * ) ( a D ln 10 / A ) 1 2 .
σ=(σD2+σM2)12ln10γ*=1γ*[aDln10A+(σMln10)2]12,