Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1935).
  2. J. Sugar, J. Opt. Soc. Am. 53, 831 (1963).
    [CrossRef]
  3. R. E. Trees, J. Opt. Soc. Am. 54, 651 (1964).
    [CrossRef]
  4. J. Blaise, private communication.
  5. Y. Bordarier, private communication.

1964 (1)

1963 (1)

Blaise, J.

J. Blaise, private communication.

Bordarier, Y.

Y. Bordarier, private communication.

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1935).

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1935).

Sugar, J.

Trees, R. E.

J. Opt. Soc. Am. (2)

Other (3)

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1935).

J. Blaise, private communication.

Y. Bordarier, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Five low multiplets of maximum multiplicity for Pr iii 4f25d The numbers specify values of J. In spite of substantial overlapping, the Landé interval rule is quite well obeyed by all multiplets.

Fig. 2
Fig. 2

Low multiplets of maximum multiplicity for U i(5 f36d7s2 + 5f36d27s). Deviations from the interval rule are ascribed to the fact that the equation ζ (5f) = ζ (6d) is only approximately true. Even so, several multiplets show regularities characteristic of Russell–Saunders coupling.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( n 1 l 1 ) a ( n 2 l 2 ) b ( n j l j ) k ,
0 < a 2 l 1 + 1 ,             0 < b 2 l 2 + 1 , ,         0 < k 2 l j + 1 ,
H so = i ξ ( r i ) s i · l i ,
ζ ( n 1 l 1 ) = ζ ( n 2 l 2 ) = = ζ ( n j l j ) ,
ζ ( n l ) = n l ξ ( r ) n l .
H so i ξ ( r i ) ( s z ) i ( l z ) i 1 2 i ξ ( r i ) ( l z ) i 1 2 ζ i ( l z ) i 1 2 ζ L z 1 2 ( M S ) max - 1 ζ S z L z 1 2 S max - 1 ζ S · L λ S · L ,
λ = 1 2 ζ ( S max ) - 1 .