Abstract

The modulation transfer function (MTF) of a photographic layer is customarily determined by means of photographic photometry. It is difficult to obtain the true function because of the interference of adjacency effects. De Belder, et al. have recently presented a method of obtaining the MTF from physical measurements of the layer. This method, which utilizes the random-walk technique, simulates the physical processes involved and requires data concerning several physically measurable parameters, including the absorption and scattering coefficients. Data for these coefficients, which De Belder lacked, have been obtained from measurement of the volume reflectance and volume transmittance of the layers by the technique developed by Wolfe, DePalma, and Saunders. The coefficients were calculated by using the Schuster, Kubelka–Munk two-flux, radiative-transfer theory. After the necessary parameters had been measured for several fine-grain silver bromide photographic layers varying in thickness from 3 to 33 μ, the MTF of each of these layers was calculated. These values were compared with the MTF of the layers measured by photographic photometry, when they were developed under conditions giving minimal adjacency effects.

Good agreement was obtained between the results of these two methods; the calculated physical values, however, were consistently somewhat higher than the photographic values. At least part of this lack of agreement is caused by halation in the photographic layers from the base-air interfaces.

© 1968 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light Scattering in Photographic Materials for Holography

Howard M. Smith
Appl. Opt. 11(1) 26-32 (1972)

Characterization of a Bleached Photographic Material

Robert L. Lamberts
Appl. Opt. 11(1) 33-41 (1972)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription