Abstract

The influence of various polymeric matrices on the phosphorescence of organic molecules is illustrated for the case of 1,2,5,6-dibenzanthracene. The phosphorescence spectra and decay times are compared with low-temperature glasses. Interaction of the aromatic hydrocarbon with the plastic matrices is shown to be greater than with the low-temperature glasses. This interaction is manifested by a higher quantum yield of phosphorescence (relative to fluorescence), but shorter decay times. The effect of the polymer on the triplet state is interpreted in terms of the vibrational structure of the phosphorescence spectra. The degree of polarization and decay time of the phosphorescence emission was studied in the range 77°–365°K and the results are related to the temperature dependence of rotation of the molecule in the matrix. The quenching action of oxygen on phosphorescence is demonstrated with film samples of 20-μ thickness.

The relevant physical properties of the plastics employed are discussed and details of sample preparation are presented.

© 1968 Optical Society of America

Full Article  |  PDF Article

Corrections

Nicholas Geacintov, Gerald Oster, and Thomas Cassen, "Erratum: Polymeric Matrices for Organic Phosphors," J. Opt. Soc. Am. 59, 367_1-367 (1969)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-59-3-367_1

References

  • View by:
  • |
  • |
  • |

  1. For a recent review of the organic triplet state, see S. K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966).
    [CrossRef]
  2. G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
    [CrossRef]
  3. W. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
    [CrossRef]
  4. E. V. Anufrieva and A. D. Saitzeva, Dokl, Akad. Nauk SSSR 24, 755 (1960); F. C. Unterleitner and E. I. Hormats, J. Phys. Chem. 69, 2516 (1965).
    [CrossRef]
  5. G. Oster and Y. Nishijima, Fortschr. Hochpolymer. Forsch. 3, 313 (1964).
    [CrossRef]
  6. G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
    [CrossRef]
  7. G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).
  8. See, for example, C. C. Winding and G. D. Hiatt, Polymeric materials (McGraw-Hill Book Co., New York, 1961).
  9. W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry (Interscience Publishers, Inc., New York, 1961).
  10. T. Cassen, Doctoral dissertation, Polytechnic Institute of Brooklyn, 1966.
  11. L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
    [CrossRef]
  12. E. Clar, Aromatische Kohlenwasserstoffe (Julius Springer–Verlag, Berlin, 1952), p. 198.
  13. M. A. El-Sayed, J. Opt. Soc. Am. 53, 797 (1963).
    [CrossRef]
  14. T. Azumi and S. P. McGlynn, J. Chem. Phys. 37, 2413 (1962).
    [CrossRef]
  15. F. Dörr, Angew. Chem. (English ed.) 5, 478 (1966).
    [CrossRef]
  16. E. Clar and M. Zander, Chem. Ber. 89, 749 (1959).
    [CrossRef]
  17. D. P. Craig and I. G. Ross, J. Chem. Soc. 1954, 1589 (1954).
    [CrossRef]
  18. A. A. Ilyina and E. V. Shpol’ski, Dokl. Akad. Nauk SSSR 25, 585 (1951).
  19. H. Perkampus and L. Pohl, Z. Physik. Chem. (Frankfurt) 40, 314 (1962).
  20. The triplet–triplet spectra of DBA in plastics have been measured and are different from those in EPA.17
  21. P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).
  22. S. S. Stimler, J. Mol. Spectry. 16, 84 (1965).
    [CrossRef]
  23. S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
    [CrossRef]
  24. E. J. Bowen and B. Brocklehurst, J. Chem. Soc. 1955, 4320 (1955).
    [CrossRef]
  25. E. V. Shpol’ski, Soviet Phys.–Usp. 77, 321 (1962); [English transl. Soviet Phys.–Usp. 5, 522(1962)].
  26. G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); J. Chem. Phys. 38, 1187 (1963).
    [CrossRef]
  27. R. E. Kellogg and R. P. Schwenker, J. Chem. Phys. 41, 2860 (1964).
    [CrossRef]
  28. S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
    [CrossRef]
  29. N. K. Chaudhuri and M. A. El-Sayed, J. Chem. Phys. 43, 1423 (1965).
    [CrossRef]
  30. G. W. Robinson, J. Chem. Phys. 46, 572 (1967).
    [CrossRef]
  31. D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).
  32. We are indebted to Dr. A. Greenberg of New York University for this measurement.
  33. R. E. Kellogg and N. Convers-Wyeth, J. Chem. Phys. 45, 3156 (1966); W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).
    [CrossRef]
  34. E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

1967 (1)

G. W. Robinson, J. Chem. Phys. 46, 572 (1967).
[CrossRef]

1966 (5)

D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).

R. E. Kellogg and N. Convers-Wyeth, J. Chem. Phys. 45, 3156 (1966); W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).
[CrossRef]

E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

For a recent review of the organic triplet state, see S. K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966).
[CrossRef]

F. Dörr, Angew. Chem. (English ed.) 5, 478 (1966).
[CrossRef]

1965 (2)

S. S. Stimler, J. Mol. Spectry. 16, 84 (1965).
[CrossRef]

N. K. Chaudhuri and M. A. El-Sayed, J. Chem. Phys. 43, 1423 (1965).
[CrossRef]

1964 (3)

R. E. Kellogg and R. P. Schwenker, J. Chem. Phys. 41, 2860 (1964).
[CrossRef]

G. Oster and Y. Nishijima, Fortschr. Hochpolymer. Forsch. 3, 313 (1964).
[CrossRef]

G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).

1963 (3)

M. A. El-Sayed, J. Opt. Soc. Am. 53, 797 (1963).
[CrossRef]

S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
[CrossRef]

S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
[CrossRef]

1962 (6)

E. V. Shpol’ski, Soviet Phys.–Usp. 77, 321 (1962); [English transl. Soviet Phys.–Usp. 5, 522(1962)].

G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); J. Chem. Phys. 38, 1187 (1963).
[CrossRef]

T. Azumi and S. P. McGlynn, J. Chem. Phys. 37, 2413 (1962).
[CrossRef]

H. Perkampus and L. Pohl, Z. Physik. Chem. (Frankfurt) 40, 314 (1962).

G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
[CrossRef]

W. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

1960 (1)

E. V. Anufrieva and A. D. Saitzeva, Dokl, Akad. Nauk SSSR 24, 755 (1960); F. C. Unterleitner and E. I. Hormats, J. Phys. Chem. 69, 2516 (1965).
[CrossRef]

1959 (2)

G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
[CrossRef]

E. Clar and M. Zander, Chem. Ber. 89, 749 (1959).
[CrossRef]

1955 (1)

E. J. Bowen and B. Brocklehurst, J. Chem. Soc. 1955, 4320 (1955).
[CrossRef]

1954 (1)

D. P. Craig and I. G. Ross, J. Chem. Soc. 1954, 1589 (1954).
[CrossRef]

1951 (2)

A. A. Ilyina and E. V. Shpol’ski, Dokl. Akad. Nauk SSSR 25, 585 (1951).

P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).

1941 (1)

L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
[CrossRef]

Anufrieva, E. V.

E. V. Anufrieva and A. D. Saitzeva, Dokl, Akad. Nauk SSSR 24, 755 (1960); F. C. Unterleitner and E. I. Hormats, J. Phys. Chem. 69, 2516 (1965).
[CrossRef]

Azumi, T.

T. Azumi and S. P. McGlynn, J. Chem. Phys. 37, 2413 (1962).
[CrossRef]

Bowen, E. J.

E. J. Bowen and B. Brocklehurst, J. Chem. Soc. 1955, 4320 (1955).
[CrossRef]

Brocklehurst, B.

E. J. Bowen and B. Brocklehurst, J. Chem. Soc. 1955, 4320 (1955).
[CrossRef]

Broyde, B.

G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
[CrossRef]

Bultar, V. A.

D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).

Campbell, T.

W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry (Interscience Publishers, Inc., New York, 1961).

Cassen, T.

G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).

T. Cassen, Doctoral dissertation, Polytechnic Institute of Brooklyn, 1966.

Chaudhuri, N. K.

N. K. Chaudhuri and M. A. El-Sayed, J. Chem. Phys. 43, 1423 (1965).
[CrossRef]

Clar, E.

E. Clar and M. Zander, Chem. Ber. 89, 749 (1959).
[CrossRef]

E. Clar, Aromatische Kohlenwasserstoffe (Julius Springer–Verlag, Berlin, 1952), p. 198.

Convers-Wyeth, N.

R. E. Kellogg and N. Convers-Wyeth, J. Chem. Phys. 45, 3156 (1966); W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).
[CrossRef]

Craig, D. P.

D. P. Craig and I. G. Ross, J. Chem. Soc. 1954, 1589 (1954).
[CrossRef]

Daigre, J.

S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
[CrossRef]

Diken, P.

P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).

Dörr, F.

F. Dörr, Angew. Chem. (English ed.) 5, 478 (1966).
[CrossRef]

El-Sayed, M. A.

For a recent review of the organic triplet state, see S. K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966).
[CrossRef]

N. K. Chaudhuri and M. A. El-Sayed, J. Chem. Phys. 43, 1423 (1965).
[CrossRef]

M. A. El-Sayed, J. Opt. Soc. Am. 53, 797 (1963).
[CrossRef]

Frosch, R. P.

G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); J. Chem. Phys. 38, 1187 (1963).
[CrossRef]

Geacintov, N.

G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).

G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
[CrossRef]

Grebenshchikov, D. M.

D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).

Hadley, S. G.

S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
[CrossRef]

Hardwick, R.

W. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

Hiatt, G. D.

See, for example, C. C. Winding and G. D. Hiatt, Polymeric materials (McGraw-Hill Book Co., New York, 1961).

Ilyina, A. A.

A. A. Ilyina and E. V. Shpol’ski, Dokl. Akad. Nauk SSSR 25, 585 (1951).

Joussot-Dubien, J.

G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
[CrossRef]

Keller, R. A.

S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
[CrossRef]

Kellogg, R. E.

R. E. Kellogg and N. Convers-Wyeth, J. Chem. Phys. 45, 3156 (1966); W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).
[CrossRef]

R. E. Kellogg and R. P. Schwenker, J. Chem. Phys. 41, 2860 (1964).
[CrossRef]

Kenyon, W. O.

L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
[CrossRef]

Khan, A. U.

G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
[CrossRef]

Laposa, J. D.

E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

Lim, E. C.

E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

Lower, S. K.

For a recent review of the organic triplet state, see S. K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966).
[CrossRef]

McGlynn, S. P.

S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
[CrossRef]

T. Azumi and S. P. McGlynn, J. Chem. Phys. 37, 2413 (1962).
[CrossRef]

Melhuish, W.

W. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

Minsk, L. M.

L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
[CrossRef]

Nishijima, Y.

G. Oster and Y. Nishijima, Fortschr. Hochpolymer. Forsch. 3, 313 (1964).
[CrossRef]

Oster, G.

G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).

G. Oster and Y. Nishijima, Fortschr. Hochpolymer. Forsch. 3, 313 (1964).
[CrossRef]

G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
[CrossRef]

G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
[CrossRef]

Perkampus, H.

H. Perkampus and L. Pohl, Z. Physik. Chem. (Frankfurt) 40, 314 (1962).

Petrov, A.

P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).

Pohl, L.

H. Perkampus and L. Pohl, Z. Physik. Chem. (Frankfurt) 40, 314 (1962).

Priest, W. J.

L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
[CrossRef]

Rast, H. E.

S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
[CrossRef]

Robinson, G. W.

G. W. Robinson, J. Chem. Phys. 46, 572 (1967).
[CrossRef]

G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); J. Chem. Phys. 38, 1187 (1963).
[CrossRef]

Ross, I. G.

D. P. Craig and I. G. Ross, J. Chem. Soc. 1954, 1589 (1954).
[CrossRef]

Saitzeva, A. D.

E. V. Anufrieva and A. D. Saitzeva, Dokl, Akad. Nauk SSSR 24, 755 (1960); F. C. Unterleitner and E. I. Hormats, J. Phys. Chem. 69, 2516 (1965).
[CrossRef]

Schwenker, R. P.

R. E. Kellogg and R. P. Schwenker, J. Chem. Phys. 41, 2860 (1964).
[CrossRef]

Shpol’ski, E. V.

E. V. Shpol’ski, Soviet Phys.–Usp. 77, 321 (1962); [English transl. Soviet Phys.–Usp. 5, 522(1962)].

A. A. Ilyina and E. V. Shpol’ski, Dokl. Akad. Nauk SSSR 25, 585 (1951).

Smith, F.

S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
[CrossRef]

Solodunov, V. V.

D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).

Sorenson, W.

W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry (Interscience Publishers, Inc., New York, 1961).

Stimler, S. S.

S. S. Stimler, J. Mol. Spectry. 16, 84 (1965).
[CrossRef]

Sveshnikov, B.

P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).

Winding, C. C.

See, for example, C. C. Winding and G. D. Hiatt, Polymeric materials (McGraw-Hill Book Co., New York, 1961).

Yu, J. M. H.

E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

Zander, M.

E. Clar and M. Zander, Chem. Ber. 89, 749 (1959).
[CrossRef]

Acta Physica Polon (1)

G. Oster, N. Geacintov, and T. Cassen, Acta Physica Polon 26, 489 (1964).

Angew. Chem. (English ed.) (1)

F. Dörr, Angew. Chem. (English ed.) 5, 478 (1966).
[CrossRef]

Chem. Ber. (1)

E. Clar and M. Zander, Chem. Ber. 89, 749 (1959).
[CrossRef]

Chem. Rev. (1)

For a recent review of the organic triplet state, see S. K. Lower and M. A. El-Sayed, Chem. Rev. 66, 199 (1966).
[CrossRef]

Dokl, Akad. Nauk SSSR (1)

E. V. Anufrieva and A. D. Saitzeva, Dokl, Akad. Nauk SSSR 24, 755 (1960); F. C. Unterleitner and E. I. Hormats, J. Phys. Chem. 69, 2516 (1965).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

A. A. Ilyina and E. V. Shpol’ski, Dokl. Akad. Nauk SSSR 25, 585 (1951).

Fortschr. Hochpolymer. Forsch. (1)

G. Oster and Y. Nishijima, Fortschr. Hochpolymer. Forsch. 3, 313 (1964).
[CrossRef]

J. Am. Chem. Soc. (2)

G. Oster, J. Joussot-Dubien, and B. Broyde, J. Am. Chem. Soc. 81, 1869 (1959).
[CrossRef]

L. M. Minsk, W. J. Priest, and W. O. Kenyon, J. Am. Chem. Soc. 63, 2715 (1941).
[CrossRef]

J. Chem. Phys. (8)

T. Azumi and S. P. McGlynn, J. Chem. Phys. 37, 2413 (1962).
[CrossRef]

S. P. McGlynn, J. Daigre, and F. Smith, J. Chem. Phys. 39, 675 (1963).
[CrossRef]

G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962); J. Chem. Phys. 38, 1187 (1963).
[CrossRef]

R. E. Kellogg and R. P. Schwenker, J. Chem. Phys. 41, 2860 (1964).
[CrossRef]

S. G. Hadley, H. E. Rast, and R. A. Keller, J. Chem. Phys. 39, 705 (1963).
[CrossRef]

N. K. Chaudhuri and M. A. El-Sayed, J. Chem. Phys. 43, 1423 (1965).
[CrossRef]

G. W. Robinson, J. Chem. Phys. 46, 572 (1967).
[CrossRef]

R. E. Kellogg and N. Convers-Wyeth, J. Chem. Phys. 45, 3156 (1966); W. Siebrand and D. F. Williams, J. Chem. Phys. 46, 403 (1967).
[CrossRef]

J. Chem. Soc. (2)

E. J. Bowen and B. Brocklehurst, J. Chem. Soc. 1955, 4320 (1955).
[CrossRef]

D. P. Craig and I. G. Ross, J. Chem. Soc. 1954, 1589 (1954).
[CrossRef]

J. Mol. Spectry. (1)

S. S. Stimler, J. Mol. Spectry. 16, 84 (1965).
[CrossRef]

J. Mopectryl. S. (1)

E. C. Lim, J. D. Laposa, and J. M. H. Yu, J. Mopectryl. S. 19, 412 (1966).

J. Opt. Soc. Am. (1)

Nature (1)

G. Oster, N. Geacintov, and A. U. Khan, Nature 196, 1089 (1962).
[CrossRef]

Opt. i Spektroskopiya (1)

D. M. Grebenshchikov, V. A. Bultar, and V. V. Solodunov, Opt. i Spektroskopiya 21, 250 (1966).

Soviet Phys. JETP (English transl.) (1)

P. Diken, A. Petrov, and B. Sveshnikov, Soviet Phys. JETP (English transl.) 21, 150 (1951).

Soviet Phys.–Usp. (1)

E. V. Shpol’ski, Soviet Phys.–Usp. 77, 321 (1962); [English transl. Soviet Phys.–Usp. 5, 522(1962)].

Trans. Faraday Soc. (1)

W. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

Z. Physik. Chem. (Frankfurt) (1)

H. Perkampus and L. Pohl, Z. Physik. Chem. (Frankfurt) 40, 314 (1962).

Other (6)

The triplet–triplet spectra of DBA in plastics have been measured and are different from those in EPA.17

E. Clar, Aromatische Kohlenwasserstoffe (Julius Springer–Verlag, Berlin, 1952), p. 198.

See, for example, C. C. Winding and G. D. Hiatt, Polymeric materials (McGraw-Hill Book Co., New York, 1961).

W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry (Interscience Publishers, Inc., New York, 1961).

T. Cassen, Doctoral dissertation, Polytechnic Institute of Brooklyn, 1966.

We are indebted to Dr. A. Greenberg of New York University for this measurement.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectra of polymer films 20 μ thick (Reference: air).

Fig. 2
Fig. 2

Absorption spectra of 1,2,5,6-dibenzanthracene (DBA) in polystyrene film 20 μ thick (Reference: blank polystyrene film, same thickness). a, 3.8 × 10−2 mole liter−1; b, 7.6 × 10−3 mole liter−1.

Fig. 3
Fig. 3

Phosphorescence intensity Ip (in relative units) and decay time τp as function of degassing time in a polyvinyl acetate film 20 μ thick. 1,2,5,6-dibenzanthracene, 3.8 × 10−2 mole liter−1. Temperature, 298°K.

Fig. 4
Fig. 4

Phosphorescence intensity Ip (in relative units) and decay time τp as function of oxygen pressure. 20-μ-thick polystyrene film; 1,2,5,6-dibenzanthracene, 3.8 × 10−2 mole liter−1. Temperature, 298°K.

Fig. 5
Fig. 5

Decay of phosphorescence intensity Ip as a function of time after cessation of illumination. 3.8 × 10−2 mole liter−1 1,2,5,6-dibenzanthracene in 20-μ-thick polyvinyl acetate films. a, Temperature 298°K, in vacuo, τp = 1.1 sec; b, 298°K, 1-mm O2, τp =0.8 sec; c, exposed to 1-mm O2 at 298°K then frozen to 77°K, τp = 1.4 sec.

Fig. 6
Fig. 6

Decay constant kp = τp−1 as a function of temperature. 3.8 × 10−2 mole liter−1. 1,2,5,6-dibenzanthracene in 20-μ-thick polycarbonate film, in vacuo.

Fig. 7
Fig. 7

Total emission of 1,2,5,6-dibenzanthracene (3.8 × 10−2 mole liter−1) in 20-μ-thick polycarbonate film as function of temperature, in vacuo. a, 77°K; b, 298°K; c, 335°K; d, 365°K.

Fig. 8
Fig. 8

Total emission of 1,2,5,6-dibenzanthracene, in vacuo. (a) EPA (77°K), 5 × 10−5 mole liter−1; (b) 20-μ-thick polystyrene film (298°K), 7.6 × 10−3 mole liter−1; (c) 3-methyl pentane (77°K), 1.6 × 10−5 mole liter−1. P, Phosphorescence. F, Fluorescence.

Fig. 9
Fig. 9

Phosphorescence emission of 1,2,5,6-dibenzanthracene (3.8 × 10−2 mole liter−1) in 20-μ-thick polystyrene films, in vacuo, temperature 298°K. (left) Sample containing residue of benzene solvent; (right) dried, benzene-free sample.

Fig. 10
Fig. 10

Light sum L = Ip0τp in relative units as function of temperature; in vacuo, 1,2,5,6-dibenzanthracene (3.8 × 10−2 mole liter−1) in 20-μ-thick polycarbonate film. P1, Ip0 and τp measured in 18 100 cm−1 region of the emission. P4, same, at 16 400 cm−1.

Tables (4)

Tables Icon

Table I Composition and some physical properties of plastics.

Tables Icon

Table II Polarization ratio p for 1,2,5,6-dibenzanthracene (3.8 × 10−2 mole liter−1) in polystyrene and polycarbonate (20-μ-thick films) at various temperatures, in vacuo.

Tables Icon

Table III Decay times, phosphorescence–fluorescence ratios, quantum yields (ϕp/ϕf), relative intensity (I) ratios of phosphorescence bands P1 and P4 (Fig. 8) and relative intersystem crossover constant kIS in different media at 298°K (unless otherwise noted), in vacuo for 1,2,5,6-dibenzanthracene.

Tables Icon

Table IV Vibrational analysis of the 1,2,5,6-dibenzanthracene emission in EPA at 77°K.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p = I - I I + I = 3 cos 2 θ - 1 cos 2 θ + 3 ,
L = 0 I p 0 exp ( - k p t ) d t = I p 0 k p - 1 = I p 0 τ p ,
ϕ p / ϕ f = ( k p 0 / k f 0 ) ( k I S / k p ) ,
k IS = 1 τ p ϕ p ϕ f ( k f 0 k p 0 ) .