Abstract

Theoretical transition probabilities and oscillator strengths are given for a number of infrared-transition arrays in Ne i and Ar i, and for the visible 5s–5p array in Kr i. About 100 Ne i gas-laser lines, and about 10 from Ar i, are included. Our calculations are based on the intermediate-coupling aproximation. Configurations were chosen for line-strength calculations on the basis of goodness of fit of observed energies and Landé g values to those calculated in intermediate coupling; of the many transition arrays possible we chose only the strongest arising from each configuration, as being least susceptible to the effects of configuration interaction. On the basis of comparisons with experimental results for other sp transition arrays in these gases we estimate that the relative strengths of the strongest half of the lines in each array are correct to about 35%. The results for the pd arrays are probably as good. The Coulomb approximation was used to obtain absolute line strengths; we estimate that the values of σ2 so obtained are correct to about 25%. The transition arrays treated were: Ne i 4s–3p, 4s–4p, 5s–4p, 5s–5p, 6s–5p, 6s–6p, 7s–6p, 7s–7p, 3p–3d, 4p–3d, 4p–4d, 5p–4d, 5p–5d, 6p–5d, 6p–6d, 7p–6d; Ar i 5s–4p, 5s–5p, 6s–5p, 6s–6p, 7s–6p; Kr i 5s–5p.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a list of lines and references to original papers, see W. R. Bennett, in Chemical Lasers (Appl. Opt. Suppl. 2, Optical Society of America, Washington, 1965), p. 3.
  2. L. Minnhagen, Arkiv Fysik 1, 425 (1949).
  3. G. F. Koster and H. Statz, J. Appl. Phys. 32, 2054 (1961).
    [Crossref]
  4. C. L. Tang, Proc. IEEE 51, 219 (1963).
    [Crossref]
  5. H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
    [Crossref]
  6. W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
    [Crossref]
  7. R. D. Cowan and K. L. Andrew, J. Opt. Soc. Am. 55, 502 (1965). The authors point out that the significance of “LS” and “jj” is that the quantities referred to are good quantum numbers in their respective coupling approximations, and that, by analogy, the designation “jK” is to be preferred over the more common designation, “jl”.
    [Crossref]
  8. G. Racah, Phys. Rev. 61, 537 (1942).
  9. R. H. Garstang and J. Van Blerkom, J. Opt. Soc. Am. 55, 1054 (1965).
    [Crossref]
  10. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1951), Ch. XI.
  11. J. B. Shumaker and C. H. Popenoe, J. Opt. Soc. Am. 57, 8 (1967).
    [Crossref]
  12. C. W. Allen, Astrophysical Quantities (University of London, Athlone Press, 1963), §14.
  13. Unpublished report. These matrices can be assembled from tables and rules given by Condon and Shortley (Ref. 10).
  14. C. E. Moore, Atomic Energy Levels, Vols. I–III, NBS Circular 467 (U. S. Government Printing Office, Washington, D. C., 1949–1958).
  15. G. H. Shortley, Phys. Rev. 47, 295 (1935), Ref. 16.
    [Crossref]
  16. See Ref. 10, pp. 271, 304, 307, 313.
  17. See Ref. 10, p. 385.
  18. See Ref. 10, §411.
  19. B. W. Shore and D. H. Menzel, Astrophys. J., Suppl. Series 12, No. 106, 187 (1965).
    [Crossref]
  20. G. K. Oertel and L. P. Shomo, Astrophys. J. Suppl. Series, No.  147 (1968). These tables extend those of Bates and Damgaard [Phil. Trans. Roy. Soc. (London) A240, 101 (1949)] to the dipole transitions f–g, g–h, and h–i, and give results in similar format for the quadrupole transitions p–p, d–d, f–f, g–g, h–h, i–i, s–d, p–f, d–g, f–h, g–i, and h–j. Entries in the tables of Φ are carried to four decimal places, one more place than given by Bates and Damagaard in their corresponding tables of ℐ.
  21. See Ref. 12, §5.
  22. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, Washington, D. C.), NSRDS–NBS4, Vol. I, 1966.
  23. C. W. Ufford, Astrophys. J. 85, 249 (1937).
    [Crossref]
  24. C. L. Bartberger, Phys. Rev. 48, 682 (1935).
    [Crossref]
  25. B. S. Malone and W. H. Corcoran, J. Quant. Spectry. Radiative Transfer 6, 443 (1966).
    [Crossref]
  26. W. L. Wiese, private communication.

1968 (1)

G. K. Oertel and L. P. Shomo, Astrophys. J. Suppl. Series, No.  147 (1968). These tables extend those of Bates and Damgaard [Phil. Trans. Roy. Soc. (London) A240, 101 (1949)] to the dipole transitions f–g, g–h, and h–i, and give results in similar format for the quadrupole transitions p–p, d–d, f–f, g–g, h–h, i–i, s–d, p–f, d–g, f–h, g–i, and h–j. Entries in the tables of Φ are carried to four decimal places, one more place than given by Bates and Damagaard in their corresponding tables of ℐ.

1967 (1)

1966 (1)

B. S. Malone and W. H. Corcoran, J. Quant. Spectry. Radiative Transfer 6, 443 (1966).
[Crossref]

1965 (3)

1964 (1)

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

1963 (2)

C. L. Tang, Proc. IEEE 51, 219 (1963).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

1961 (1)

G. F. Koster and H. Statz, J. Appl. Phys. 32, 2054 (1961).
[Crossref]

1949 (1)

L. Minnhagen, Arkiv Fysik 1, 425 (1949).

1942 (1)

G. Racah, Phys. Rev. 61, 537 (1942).

1937 (1)

C. W. Ufford, Astrophys. J. 85, 249 (1937).
[Crossref]

1935 (2)

C. L. Bartberger, Phys. Rev. 48, 682 (1935).
[Crossref]

G. H. Shortley, Phys. Rev. 47, 295 (1935), Ref. 16.
[Crossref]

Allen, C. W.

C. W. Allen, Astrophysical Quantities (University of London, Athlone Press, 1963), §14.

Andrew, K. L.

Bartberger, C. L.

C. L. Bartberger, Phys. Rev. 48, 682 (1935).
[Crossref]

Bennett, W. R.

For a list of lines and references to original papers, see W. R. Bennett, in Chemical Lasers (Appl. Opt. Suppl. 2, Optical Society of America, Washington, 1965), p. 3.

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1951), Ch. XI.

Corcoran, W. H.

B. S. Malone and W. H. Corcoran, J. Quant. Spectry. Radiative Transfer 6, 443 (1966).
[Crossref]

Cowan, R. D.

Faust, W. L.

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Garstang, R. H.

Glennon, B. M.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, Washington, D. C.), NSRDS–NBS4, Vol. I, 1966.

Koster, G. F.

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

G. F. Koster and H. Statz, J. Appl. Phys. 32, 2054 (1961).
[Crossref]

Malone, B. S.

B. S. Malone and W. H. Corcoran, J. Quant. Spectry. Radiative Transfer 6, 443 (1966).
[Crossref]

McFarlane, R. A.

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

Menzel, D. H.

B. W. Shore and D. H. Menzel, Astrophys. J., Suppl. Series 12, No. 106, 187 (1965).
[Crossref]

Minnhagen, L.

L. Minnhagen, Arkiv Fysik 1, 425 (1949).

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vols. I–III, NBS Circular 467 (U. S. Government Printing Office, Washington, D. C., 1949–1958).

Oertel, G. K.

G. K. Oertel and L. P. Shomo, Astrophys. J. Suppl. Series, No.  147 (1968). These tables extend those of Bates and Damgaard [Phil. Trans. Roy. Soc. (London) A240, 101 (1949)] to the dipole transitions f–g, g–h, and h–i, and give results in similar format for the quadrupole transitions p–p, d–d, f–f, g–g, h–h, i–i, s–d, p–f, d–g, f–h, g–i, and h–j. Entries in the tables of Φ are carried to four decimal places, one more place than given by Bates and Damagaard in their corresponding tables of ℐ.

Popenoe, C. H.

Racah, G.

G. Racah, Phys. Rev. 61, 537 (1942).

Shomo, L. P.

G. K. Oertel and L. P. Shomo, Astrophys. J. Suppl. Series, No.  147 (1968). These tables extend those of Bates and Damgaard [Phil. Trans. Roy. Soc. (London) A240, 101 (1949)] to the dipole transitions f–g, g–h, and h–i, and give results in similar format for the quadrupole transitions p–p, d–d, f–f, g–g, h–h, i–i, s–d, p–f, d–g, f–h, g–i, and h–j. Entries in the tables of Φ are carried to four decimal places, one more place than given by Bates and Damagaard in their corresponding tables of ℐ.

Shore, B. W.

B. W. Shore and D. H. Menzel, Astrophys. J., Suppl. Series 12, No. 106, 187 (1965).
[Crossref]

Shortley, G. H.

G. H. Shortley, Phys. Rev. 47, 295 (1935), Ref. 16.
[Crossref]

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1951), Ch. XI.

Shumaker, J. B.

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, Washington, D. C.), NSRDS–NBS4, Vol. I, 1966.

Statz, H.

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

G. F. Koster and H. Statz, J. Appl. Phys. 32, 2054 (1961).
[Crossref]

Tang, C. L.

C. L. Tang, Proc. IEEE 51, 219 (1963).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

Ufford, C. W.

C. W. Ufford, Astrophys. J. 85, 249 (1937).
[Crossref]

Van Blerkom, J.

Wiese, W. L.

W. L. Wiese, private communication.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, Washington, D. C.), NSRDS–NBS4, Vol. I, 1966.

Arkiv Fysik (1)

L. Minnhagen, Arkiv Fysik 1, 425 (1949).

Astrophys. J. (1)

C. W. Ufford, Astrophys. J. 85, 249 (1937).
[Crossref]

Astrophys. J. Suppl. Series (1)

G. K. Oertel and L. P. Shomo, Astrophys. J. Suppl. Series, No.  147 (1968). These tables extend those of Bates and Damgaard [Phil. Trans. Roy. Soc. (London) A240, 101 (1949)] to the dipole transitions f–g, g–h, and h–i, and give results in similar format for the quadrupole transitions p–p, d–d, f–f, g–g, h–h, i–i, s–d, p–f, d–g, f–h, g–i, and h–j. Entries in the tables of Φ are carried to four decimal places, one more place than given by Bates and Damagaard in their corresponding tables of ℐ.

Astrophys. J., Suppl. Series (1)

B. W. Shore and D. H. Menzel, Astrophys. J., Suppl. Series 12, No. 106, 187 (1965).
[Crossref]

J. Appl. Phys. (3)

G. F. Koster and H. Statz, J. Appl. Phys. 32, 2054 (1961).
[Crossref]

H. Statz, C. L. Tang, and G. F. Koster, J. Appl. Phys. 34, 2625 (1963).
[Crossref]

W. L. Faust and R. A. McFarlane, J. Appl. Phys. 35, 2010 (1964).
[Crossref]

J. Opt. Soc. Am. (3)

J. Quant. Spectry. Radiative Transfer (1)

B. S. Malone and W. H. Corcoran, J. Quant. Spectry. Radiative Transfer 6, 443 (1966).
[Crossref]

Phys. Rev. (3)

C. L. Bartberger, Phys. Rev. 48, 682 (1935).
[Crossref]

G. H. Shortley, Phys. Rev. 47, 295 (1935), Ref. 16.
[Crossref]

G. Racah, Phys. Rev. 61, 537 (1942).

Proc. IEEE (1)

C. L. Tang, Proc. IEEE 51, 219 (1963).
[Crossref]

Other (11)

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, 1951), Ch. XI.

See Ref. 10, pp. 271, 304, 307, 313.

See Ref. 10, p. 385.

See Ref. 10, §411.

C. W. Allen, Astrophysical Quantities (University of London, Athlone Press, 1963), §14.

Unpublished report. These matrices can be assembled from tables and rules given by Condon and Shortley (Ref. 10).

C. E. Moore, Atomic Energy Levels, Vols. I–III, NBS Circular 467 (U. S. Government Printing Office, Washington, D. C., 1949–1958).

W. L. Wiese, private communication.

For a list of lines and references to original papers, see W. R. Bennett, in Chemical Lasers (Appl. Opt. Suppl. 2, Optical Society of America, Washington, 1965), p. 3.

See Ref. 12, §5.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, Washington, D. C.), NSRDS–NBS4, Vol. I, 1966.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Rare-gas transition arrays treated, and adopted values of σ2.

Tables (6)

Tables Icon

Table I Results of energy-level fits for p5s configurations.

Tables Icon

Table II Results of energy-level fits for p5p configurations.

Tables Icon

Table III Results of energy-level fits for p5d configurations.

Tables Icon

Table IV Comparison of intermediate coupling calculations with experiments.

Tables Icon

Table V Transition probabilities for sp arrays.

Tables Icon

Table VI Transition probabilities for pd arrays.