Abstract

The optical constants n and k for polystyrene in both bulk and chemically deposited thin-film form have been measured by the reflectance vs angle of incidence technique in the wavelength region from 584 to 2000 Å. Four angles of incidence were used, and the effects of monochromator polarization were eliminated experimentally. The results differ from previously published data for the bulk form. The electron-energy-loss function −Im(1/) was calculated from n and k determined for the thin films and compared with values obtained previously by characteristic electron-energy-loss techniques. These two methods yield the same structure in the energy-loss function; however, there remains some difference in the magnitude of the 6.9-eV loss relative to the background.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Madden in Physics of Thin Films, Vol. I, G. Hass and R. Thun, Eds. (Academic Press Inc., New York, 1963) p. 123.
  2. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963), and references therein.
    [Crossref]
  3. H. R. Philipp and H. E. Ehrenreich, Phys. Rev. 129, 1550 (1963); H. Raether, Springer Tracts in Mod. Phys. 38, 84 (1965); R. E. LaVilla and H. Mendlowitz, Appl. Opt. 6, 61 (1967).
    [Crossref] [PubMed]
  4. M. Creuzburg, Z. Physik 196, 433 (1966).
    [Crossref]
  5. J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
    [Crossref]
  6. N. Swanson and C. J. Powell, J. Chem. Phys. 39, 630 (1963); see also calculations of ∊1and ∊2 based on these measurements, R. E. LaVilla and H. MendlowitzJ. Phys. (Paris) 25, 114 (1964).
    [Crossref]
  7. K. Rabinovitch, L. R. Canfield, and R. P. Madden, Appl. Opt. 4, 1005 (1965).
    [Crossref]
  8. R. S. M. Revell and A. W. Agar, Brit. J. Appl. Phys. 6, 23 (1955).
    [Crossref]
  9. S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (The Clarendon Press, Oxford, 1948).
  10. A convenient form of Fresnel’s equations can be found in Ref. 11.
  11. R. Tousey, J. Opt. Soc. Am. 29, 235 (1939).
    [Crossref]
  12. D. W. Juenker, J. Opt. Soc. Am. 55, 295 (1965).
    [Crossref]
  13. W. R. Hunter, J. Opt. Soc. Am. 55, 1197 (1965).
    [Crossref]
  14. N. Swanson and C. J. Powell (private communication).
  15. D. M. Roessler and W. C. Walker, J. Phys. Chem Solids 28, 1507 (1967).
    [Crossref]

1967 (1)

D. M. Roessler and W. C. Walker, J. Phys. Chem Solids 28, 1507 (1967).
[Crossref]

1966 (2)

M. Creuzburg, Z. Physik 196, 433 (1966).
[Crossref]

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

1965 (3)

1963 (3)

U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963), and references therein.
[Crossref]

H. R. Philipp and H. E. Ehrenreich, Phys. Rev. 129, 1550 (1963); H. Raether, Springer Tracts in Mod. Phys. 38, 84 (1965); R. E. LaVilla and H. Mendlowitz, Appl. Opt. 6, 61 (1967).
[Crossref] [PubMed]

N. Swanson and C. J. Powell, J. Chem. Phys. 39, 630 (1963); see also calculations of ∊1and ∊2 based on these measurements, R. E. LaVilla and H. MendlowitzJ. Phys. (Paris) 25, 114 (1964).
[Crossref]

1955 (1)

R. S. M. Revell and A. W. Agar, Brit. J. Appl. Phys. 6, 23 (1955).
[Crossref]

1939 (1)

Agar, A. W.

R. S. M. Revell and A. W. Agar, Brit. J. Appl. Phys. 6, 23 (1955).
[Crossref]

Birkhoff, R. D.

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

Canfield, L. R.

Carter, J. G.

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

Creuzburg, M.

M. Creuzburg, Z. Physik 196, 433 (1966).
[Crossref]

Ehrenreich, H. E.

H. R. Philipp and H. E. Ehrenreich, Phys. Rev. 129, 1550 (1963); H. Raether, Springer Tracts in Mod. Phys. 38, 84 (1965); R. E. LaVilla and H. Mendlowitz, Appl. Opt. 6, 61 (1967).
[Crossref] [PubMed]

Fano, U.

U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963), and references therein.
[Crossref]

Hamm, R. N.

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

Hunter, W. R.

Jelinek, T. M.

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

Juenker, D. W.

Madden, R. P.

K. Rabinovitch, L. R. Canfield, and R. P. Madden, Appl. Opt. 4, 1005 (1965).
[Crossref]

R. P. Madden in Physics of Thin Films, Vol. I, G. Hass and R. Thun, Eds. (Academic Press Inc., New York, 1963) p. 123.

Philipp, H. R.

H. R. Philipp and H. E. Ehrenreich, Phys. Rev. 129, 1550 (1963); H. Raether, Springer Tracts in Mod. Phys. 38, 84 (1965); R. E. LaVilla and H. Mendlowitz, Appl. Opt. 6, 61 (1967).
[Crossref] [PubMed]

Powell, C. J.

N. Swanson and C. J. Powell, J. Chem. Phys. 39, 630 (1963); see also calculations of ∊1and ∊2 based on these measurements, R. E. LaVilla and H. MendlowitzJ. Phys. (Paris) 25, 114 (1964).
[Crossref]

N. Swanson and C. J. Powell (private communication).

Rabinovitch, K.

Revell, R. S. M.

R. S. M. Revell and A. W. Agar, Brit. J. Appl. Phys. 6, 23 (1955).
[Crossref]

Roessler, D. M.

D. M. Roessler and W. C. Walker, J. Phys. Chem Solids 28, 1507 (1967).
[Crossref]

Swanson, N.

N. Swanson and C. J. Powell, J. Chem. Phys. 39, 630 (1963); see also calculations of ∊1and ∊2 based on these measurements, R. E. LaVilla and H. MendlowitzJ. Phys. (Paris) 25, 114 (1964).
[Crossref]

N. Swanson and C. J. Powell (private communication).

Tolansky, S.

S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (The Clarendon Press, Oxford, 1948).

Tousey, R.

Walker, W. C.

D. M. Roessler and W. C. Walker, J. Phys. Chem Solids 28, 1507 (1967).
[Crossref]

Ann. Rev. Nucl. Sci. (1)

U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963), and references therein.
[Crossref]

Appl. Opt. (1)

Brit. J. Appl. Phys. (1)

R. S. M. Revell and A. W. Agar, Brit. J. Appl. Phys. 6, 23 (1955).
[Crossref]

J. Chem. Phys. (2)

J. G. Carter, T. M. Jelinek, R. N. Hamm, and R. D. Birkhoff, J. Chem. Phys. 44, 2266 (1966).
[Crossref]

N. Swanson and C. J. Powell, J. Chem. Phys. 39, 630 (1963); see also calculations of ∊1and ∊2 based on these measurements, R. E. LaVilla and H. MendlowitzJ. Phys. (Paris) 25, 114 (1964).
[Crossref]

J. Opt. Soc. Am. (3)

J. Phys. Chem Solids (1)

D. M. Roessler and W. C. Walker, J. Phys. Chem Solids 28, 1507 (1967).
[Crossref]

Phys. Rev. (1)

H. R. Philipp and H. E. Ehrenreich, Phys. Rev. 129, 1550 (1963); H. Raether, Springer Tracts in Mod. Phys. 38, 84 (1965); R. E. LaVilla and H. Mendlowitz, Appl. Opt. 6, 61 (1967).
[Crossref] [PubMed]

Z. Physik (1)

M. Creuzburg, Z. Physik 196, 433 (1966).
[Crossref]

Other (4)

S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (The Clarendon Press, Oxford, 1948).

A convenient form of Fresnel’s equations can be found in Ref. 11.

R. P. Madden in Physics of Thin Films, Vol. I, G. Hass and R. Thun, Eds. (Academic Press Inc., New York, 1963) p. 123.

N. Swanson and C. J. Powell (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Reflectance Ra as a function of angle of incidence θ for an opaque polystyrene film at 1216 Å. The reflectance Ra shown is for unpolarized incident radiation.

Fig. 2
Fig. 2

Reflectance Ra measured in this study for both film and bulk samples of polystyrene as a function of wavelength λ for an incidence angle of 30°. Reflectance was measured only at the points indicated. Data for two different films and for the results of two separate runs of the bulk sample are shown.

Fig. 3
Fig. 3

Optical constants n, the refractive index, and k, the extinction coefficient, for opaque polystyrene films as functions of wavelength. The points shown are the n and k values obtained for two separate films.

Fig. 4
Fig. 4

Optical constants n and k for a bulk sample of polystyrene as functions of wavelength. The points shown are the n, k values obtained from two measurements of the bulk sample.

Fig. 5
Fig. 5

Index of refraction n for film and bulk polystyrene as a function of wavelength: A—polystyrene films, this study; B—bulk polystyrene, this study; C—bulk polystyrene determined by Carter et al.5

Fig. 6
Fig. 6

Extinction coefficient k for film and bulk polystyrene as a function of wavelength: A—polystyrene films, this study; B—bulk polystyrene, this study; C—bulk polystyrene determined by Carter et al.5

Fig. 7
Fig. 7

−Im(1/) ( = complex dielectric constant) measured by optical technique for film and bulk polystyrene as a function of energy: A—polystyrene films, this study; B—bulk polystyrene, this study; C—bulk polystyrene, reported by Carter et al.5

Fig. 8
Fig. 8

−Im(1/) ( = complex dielectric constant) for polystyrene films calculated by Swanson and Powell from electron-energy-loss measurements: A—calculated −Im(1/) function; B—previously published experimental spectrum (arbitrary ordinate scale).

Fig. 9
Fig. 9

−Im(1/) ( = complex dielectric constant) for polystyrene films as a function of energy: A—values calculated by Swanson and Powell from electron-energy-loss measurements; B—values from optical measurements made in this study.